
ARGUS BOOKS

IÏÏ«<EÆId¡11«
ON THE

r 11 H :7iH
CPC464&664

MIKE JAMES, KAYEWBANK & S.M.GEE

Working graphics on the
AMSTRAD CPC464 & 664

Working graphics on the
AMSTRAD CPC 464 & 664

Mike James, Kay Ewbank
& S.M. Gee

Argus Books Limited
1 Golden Square
London WIR 3AB

© Argus Books Ltd 1985

ISBN 0 85242 874 X

All rights reserved. No part of this publication may be
reproduced in any form, by print, photography, microfilm
or any other means without written permission from the
publisher.

Phototypesetting by Photocomp Ltd, Birmingham

Printed and bound by Whitstable Litho

Preface

Computer graphics is a subject that has an immediate appeal, but
producing the effects that are so impressive in computer games,
simulations and screen displays (such as those to be seen on
television and on films) takes more than just an understanding of
the Amstrad's graphics commands. The purpose of this book is to
show how, using nothing more than BASIC, the Amstrad
CPC464, 664 and 6128 can be used to produce high quality
graphics - a glance through the illustrations will quickly indicate
both the scope of the book and the results that you can expect to
achieve with it.

The first chapter presents the Amstrad's BASIC graphics com
mands in a logical fashion with the emphasis on how they are
used rather than just what they do. After this first chapter the rest
of the book concentrates on three topics - animation, painting
and two and three dimensional point and line graphics. The
theory behind each topic is explained and illustrated using
programs that range from small demonstrations to complete
applications. If you are looking for example programs then you
will find plenty to interest you - both by way of games and
recreation and serious applications. Amongst others are an
animated game, a painting and drawing program, a two dimen
sional draughting program and a three dimensional viewer.

All of the programs in this book have been reproduced directly
from listings of working programs and so we are confident that if
you type them in as presented they will work. You should find
the programs easy to understand because they have been de
veloped using a natural structured programming style. None of
the programs have been renumbered, because while this would
make entering the programs easier it would mean losing the line
numbering scheme that we used while developing the programs.
If you wish to modify or extend any of the programs you will find
the explanations of the subroutine structure a handy reference.

Thanks are due to Phil Chapman for turning our words into a
book.

Contents

Preface

1 Amstrad graphics 1

2 Animation in text mode using sprites 26

3 Advanced animation 53

4 Charts and graphs - an introduction to co-ordinates 73

5 Freestyle graphics - painting 96

6 A graphics editor 121

7 Looking at three dimensions 150

Appendix I A resume of graphics commands 172

Index 175

Amstrad graphies 1

No matter what you are interested in using your Amstrad for,
graphics is bound to be an important feature. In its own right
graphics is an interesting subject, but it is also fundamental to
almost every application. This book sets out to show just how
much can be achieved using the Amstrad's graphics capabilities.
Later chapters explain and demonstrate animation, graphs and
charts, computer assisted painting and 2D and 3D drawing. Some
of the program examples given later are fully working, ready-to-
use applications programs (in particular see AMART in Chapter
Five, AMPLOT in Chapter Six and AMVIEW in Chapter Seven).
Even though the emphasis is on the practical uses of graphics,
there are explanations which will enable you to understand
graphics and go on to modify the examples or produce your own
programs.

First, you need to be able to program in BASIC and, of course,
to be familiar with your Amstrad. This chapter describes the use
of the Amstrad's BASIC graphics commands and, if you are at all
confused or uncertain about how these commands work, read it
carefully before moving on. If you feel confident that you already
understand the commands, it is still worth looking through this
chapter as a refresher. To get the most out of this book it is
important to try the examples. Very often it is only by experi
menting with something that the real power of a method becomes
clear.

Finally, it is worth saying that all of the program listings in this
book have been produced directly from the Amstrad, thus avoid
ing the errors of typesetting. All of the 'printer dumped' illus
trations were produced using the programs given in this book
and hence they represent what you can expect to achieve your
self. In fact, since many of the programs depend on colour or
animation you should be able to do better!

All of the programs will run (and have been tested) on both the i

2 Amstrad graphies

Amstrad CPC 464 and the 664. Apart from the few extra graphics
commands which the 664 has, which are described separately, all
of the discussion of the methods and programs apply equally to
the 464 and the 664. The high level of compatibility of the
CPC 6128 with its smaller relatives means that the programs in
this book should also run on the 6128.

The pixel and display modes

All computer graphics is based on the idea of a display made up
of 'pixels' (short for 'picture elements'). A pixel is simply the
smallest area of the display that can be set to a given colour. The
size and number of pixels in a display governs the fineness of
detail that can be represented, and so the more pixels the better.
However, the colour of each pixel has to be stored in memory,
and more pixels use more memory. In practice a compromise is
struck between memory saved and the number of pixels.

Although all computer graphics is achieved by setting the
colour of individual pixels it is not always convenient to work one
pixel at a time. In particular when it comes to printing text it
would be very tedious to have to specify the colour of each pixel
used to form a letter 'A' for example. To overcome this problem
commands are made available that automatically set groups of
pixels to form the shapes of any given letter in a single operation -
this is referred to as 'character graphics' and it corresponds to the
well known idea of PRINTing text to the screen. What is import
ant to notice here is that PRINTing characters to the screen uses
the same display mechanism as the more obviously 'graphics'
operations such as drawing a line - i.e. setting a group of pixels to
a specified colour. (This is not the case with some other machines,
where printing text and graphics have to be done in different
display modes.)

The Amstrad has three different display modes that can be
used for printing text, or for graphics, or any combination of the
two. Each mode offers the Amstrad programmer a different total
number of pixels and number of colours. In terms of text display
this amounts to a different number of characters on a line, lines
on a screen and number of colours. Each mode is, in fact, a
compromise between spatial resolution (i.e. number of pixels)
and colour resolution (i.e. how many colours can be used). The
details of the three modes are given in the following table.

The pixel and display modes 3

Mode characters
by lines

horizontal
by vertical

no of
colours

0 20x25 160x200 16
1 40x25 320x200 4
2 80x25 640x200 2

The column labelled 'horizontal by vertical' gives the size of the
screen in terms of the pixels that make up the screen, and this will
be discussed more fully later in the chapter. No matter what
mode you are in, a total of 16K of memory is used to store the
screen. There is, however, still plenty of memory left over for
programs. It is worth noticing that altering the display mode
doesn't alter the horizontal resolution which is fixed at 200 pixels.

To change mode use
MODE m
where'm' is the number of the mode required.

Character and pixel graphics

In any of the Amstrad's graphics modes there are two possible
ways of working. The first is based on using commands that
manipulate characters, and the second is based on using com
mands that are concerned with pixels. Character based graphics is
generally easy to use and fast, and for this reason it is often used
for animation. Pixel based or 'high resolution' graphics is used for
drawing outlines, graphs, backgrounds and, of course, every
thing that is difficult using character graphics! This division is
admittedly artificial but it does make sense to deal first with both
type of graphics in turn and then look at the ways in which they
can be made to work together.

Character graphics

PRINT and LOCATE
To be able to create graphics displays using characters it is
necessary to have some way of positioning output anywhere on
the screen and either a good range of graphics characters or the
ability to define new graphics characters, or both. The first

4 Amstrad graphies

requirement is satisfied by the LOCATE command. LOCATE x,y
will cause the next output to appear at line y and column x. The
printing positions are counted from the left hand side of the
screen starting with column 1 and finishing with column 20 in
mode 0, 40 in mode 1 and 80 in mode 2. Similarly, the line
numbering goes from 1, for the top line, to 25, for the bottom line.
Thus to print a letter A for example at line y and column x use

LOCATE x,y: PRINT "A";

The trailing semi-colon at the end of the PRINT statement
suppresses the automatic line feed that is normally performed at
the end of every PRINT statement. The only time that an auto
matic line feed after a PRINT causes a problem in graphics is when
it causes the screen to scroll. If you would like to see the effect
of leaving the semi-colon off the end of the PRINT statement try

10 MODE 2
20 LOCATE 80,25
30 PRINT "A"
U0 GOTO 20

This program should repeatedly print the letter A at the same
position on the screen but, because this position is the bottom
right hand corner, the line feed causes the screen to scroll and
hence produces a 'stream' of letter As. If you add a semicolon
onto the end of line 30 you will see only a single letter A as
intended.

When you are typing something in to the Amstrad the position
where the next character will appear is marked by a block called
the 'text cursor'. Even though the text cursor is not displayed
while a BASIC program is running you can still imagine that
LOCATE x,y has the effect of moving the text cursor to row y and
column x.

The character set - ASC and CHR$
The second requirement for character graphics is a good range of
character shapes. The Amstrad has rather more than just the A to
Z and a to z characters that are found on most computers. In
order to make the large collection of characters easier to use each
one is assigned a code number - its 'ASCII code'. For example the
letter 'A' has an ASCII code of 65 and 'a' has an ASCII code of 97.

Character graphics 5

The full set of ASCII codes can be found in Appendix III of the
'User Instructions'. However you can also use the function ASC
to discover the ASCII code of any particular character as ASC(A$)
will return the ASCII code of the first character in the string A$. In
the same way you can find out which character corresponds to
any ASCII code using the CHR$ function, as CHR$(n) returns the
single character with ASCII code n. Notice that ASC takes you
from the letter to the code and CHR$ from the code to the letter. It
is also important to know that, although the ASCII code starts at 0
and ends at 255, the characters from 0 to 31 are special in that they
do not correspond to anything that can be printed on the screen -
they are non-printable or 'control' chraracters and they are
described later. To see the complete character set use

10 MODE 1
20 FOR 1=32 to 255
30 PRINT CHR$(I):
110 NEXT I

Notice that by starting the FOR loop at 32 we have avoided trying
to print the control characters.

User-defined graphics characters - SYMBOL and
SYMBOL AFTER
Although the standard character set described above is fairly
comprehensive there is always the possibility that the character or
characters that you need are missing. Fortunately there is no need
to worry - the entire Amstrad character set can be redefined to
make any shape correspond to any ASCII code. Before we explain
how to define new characters we first have to examine how
characters are produced on the screen. Every character that the
Amstrad can display on the screen is produced from a grid of 64
dots arranged into a square, eight dots by eight dots. The pattern
of any character depends on which dots in the grid are displayed
as black and which are displayed as white. (How colour is
handled is best described later; for the moment it is simpler to
think about how the machine works when it is first switched on -
i.e. bright letters on a dark background.) The black dots are
referred to as 'background' dots because it is usual to construct
character shapes as a pattern of white dots using the black dots as
a background. For the same reason the white dots are usually
called 'foreground' dots. For example, the letter 'a' can be
produced by the pattern of dots shown in fig 1.1 (f stands for
foreground and b for background).

6 Amstrad graphies

bbbbbbbb
bbbbbbbb
bbfffbbb
bbbbbfbb
bbffffbb
bfbbbfbb
bbffffbb
bbbbbbbb

Fig 11 User-defined graphics - foreground and background dots

You might find it difficult to see the pattern of the letter 'a' among
the 'f's' and 'b's' but it becomes very clear if each 'f' is replaced by
an asterisk and each 'b' is replaced by a blank as in fig 1.2.

♦

* *

Fig 1.2 User-defined letter 'a'

Obviously, if we are going to define the shape that corresponds to
a user-defined graphics character, there must be some way of
specifying which dots in the 8 by 8 grid are foreground and which
are background. The definition of the new character has to be
done a row at a time. Each row in the grid can be written as a
sequence of eight digits by writing a 0 for every background dot
and a 1 for every foreground dot. For example, the row 'bbfffbbb'
would be written as '00111000'. This row of eight noughts and
ones has to be converted to a single decimal number by multi
plying each one by a weight and adding up the result. The
weights for each nought or one starting from the far left are

128 64 32 16 8 4 2 1

which gives

0*128+0*64+0*32+1*16+1*8+0*4+0*2+0*1

or 24 for the row of dots given by

0 0 0 1 1 0 0 0

Character graphics 7

To produce the definition of a complete character you have to
convert each of the eight rows of dots to eight numbers that
represent the shape of the character. Once you have done this
you can use the statement

SYMBOL X,rl,r2,r3,r4,r5,r6,r7,r8

to define the character whose ASCII code is 'x', where rl to r8 are
the eight numbers that represent the eight dot rows. The Amstrad
sets aside enough memory to store the definitions of characters
corresponding to the ASCII codes 240 to 255, that is 16 characters.
It is possible to reserve more memory for more character
definitions but it is rare that more than 16 user-defined graphics
characters are needed in the same program. If you do need more
user-defined characters then simply use

SYMBOL AFTER x

which will make all the characters corresponding to ASCII codes x
to 255 to be user-definable. A second effect of a SYMBOL AFTER
statement is that it resets all of the character definitions back to
what they were when the machine was first switched on.

Converting each dot row of the letter 'a' pattern given above
results in the following SYMBOL statement

SYMBOL 240,0,0,56,4,60,68,60,0

which sets the definition of character 240, that is following this
SYMBOL statement PRINT CHR$(240) will print the letter 'a'.

Hexadecimal numbers - HEX$ and BIN$

Although the coding of each row of dots in a user-defined
character into a single number has been explained in terms of the
familiar decimal numbers and arithmetic it is a lot easier to use
hexadecimal numbers. The reason for this is simply that the row
of zeros and ones that represent the dot pattern is nothing more
than a binary number and it is particularly easy to convert a
binary number to a hexadecimal number. All that you have to do
is to divide the number up into groups of four bits (i.e. four ones
or zeros) and convert each group to hexadecimal using the
following table

8 Amstrad graphies

bits hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

You will notice from this table that a hexadecimal number can
contain not only the usual digits 0 to 9 but the letters A to F as
well! The Amstrad allows hexadecimal numbers to be used
anywhere that a decimal number can. They are distinguished
from decimal numbers by the use of the prefix So, in Amstrad
BASIC, 3 is a decimal number but &3 is a hexadecimal number.
For example the row of dots corresponding to 00011000 can be
converted to a hexadecimal number by looking up the two groups
of four bits. The first group of four bits is 0001 and this cor
responds to 1 in the table. The second group of four bits is 1000
and this corresponds to 8 in the table, making the hexadecimal
number that represents 00011000 equal to &18. As another
example the hexadecimal equivalent of 11101000 is &E8, that is

1110 1000
& E 8

Using hex numbers the definition of the letter 'a' given earlier
becomes

SYMBOL 240, &00, &00, &38, &04, &3C, &44, &3C, &00

If you find the above conversion method difficult to apply, then
it will come as something of a relief to discover that the Amstrad
has a function that will convert numbers to hex for you. The

Character graphics 9

function HEX$(n) will return a string that is the hex represent
ation of the number n. Thus if you want to know what n is in hex
use

PRINT HEX$(n)

The Amstrad can handle binary numbers in the same way that
it can handle hex. If you want to write a binary number in
Amstrad BASIC simply write &X in front of it. So 101 is one
hundred and one but &X101 is binary 101 or 5 in decimal. There is
also a function BIN$(n) which will return a string that is the
binary representation of n.

Using all this information it is easy to see that to convert to hex
a line of zeros and ones in a character definition all you have to
use is

PRINT HEX$(&Xb)

where b is a sequence of eight zeros or ones. For example

PRINT HEX$(&X00111000)

will print 38 as the hex value for the third line in the definition of
the letter 'a' given above.

Controlling colour - PAPER, PEN and INK

The Amstrad is capable of producing 27 different colours ranging
from black to bright white. However as the maximum number of
colours that can be used at any time is 16 (in mode 0) there
obviously has to be some way of selecting which of the 27 possible
colours will be used. Each is indicated by a code number between
0 and 26, which never changes. So, for example, orange is always
colour number 15. These colour numbers can be referred to as
'physical colour codes' because each number corresponds to a
definite colour. On the other hand, the colours that are available
in any given mode are also referred to by code numbers - i.e. 0 to
15 in mode 0, 0 to 3 in mode 1 and 0 and 1 in mode 2 and these
colour codes do not always correspond to the same physical
colour. For this reason they can be called 'logical colours'. A
logical colour is assigned a definite physical colour by the INK
command

10 Amstrad graphies

INK L,P

where L is the number of the logical colour that is assigned to
physical colour P. (The Amstrad manual refers to logical colours
as 'inks' but, as this tends to be confused with the INK command,
we will use the term 'logical colour'.) For example in MODE 2
there are only two logical colours 0 and 1 and the commands

INK 0,21
INK 1,15

would assign logical colour 0 to physical colour 21, i.e. lime green,
and logical colour 1 to physical colour 15, i.e. orange, (giving an
orange on lime green display - YUK!!). The important point is
that although you are limited in the number of colours you can
use in any mode you can select them from the full range of
physical colours. A more subtle point is that you can change the
logical to physical assignment at any time during a program and
hence change the colours that are already displayed on the screen
very rapidly. A slightly more advanced form of the INK command
is

INK L,P1,P2

which assigns logical colour L to physical colours Pl and P2
alternately - that is flashing between Pl and P2.

Apart from the INK command the only other command that
uses physical colours is

BORDER P

which sets the border of the display to physical colour P. All the
other colour control commands work in terms of the logical
colours available in any given mode.

As already explained, there are two colours associated with a
character, its foreground colour and its background colour. The
colour of foreground pixels is set by the command

PEN L

and the colour of the background pixels is set by

PAPER L

where L is a logical colour. For example the letter 'A' can be

Controlling colour - PAPER, PEN and INK 11

printed in a number of combinations of foreground and back
ground colours using

10
20
30
U0
50
60
70
80
90

MODE 0
FOR L-0 TO 15
INK L,L

NEXT L
FOR L=0 TO 15
PEN L
PAPER 15-L
PRINT "A";

NEXT L

The first FOR loop in this example sets up the 16 logical colours (0
to 15) to correspond to the first 16 physical colours (also 0 to 15).
The second FOR loop sets the pen colour to each logical colour in
turn and sets the paper colour to 15-L and then prints 'A'.

This is all there is to controlling colour in character graphics. In
every program you should

1 Set the logical to physical colour assignment
2 Select a foreground colour using PEN
3 Select a background colour using PAPER

Pixel graphics

Co-ordinates and graphics increments
The main difference between character and pixel or high res
olution graphics is in the use of co-ordinates. The basic method of
specifying which pixel a high resolution command refers to is to
use x and y co-ordinates which roughly correspond to the
columns and lines in character graphics. As the screen is composed
of pixels ordered into rows and columns, the x co-ordinate can be
thought of as indicating the pixel column and the y co-ordinate
the pixel row. The Amstrad will accept co-ordinates as if the
screen were composed of 640 pixels horizontally and 400 pixels
vertically. Of course the actual number of horizontal pixels varies
according to the mode and there are only 200 vertical pixels
irrespective of mode so treating the screen as if it was 640 by 400
pixels may seem like an odd thing to do. It does mean, however,
that you can write a program in one mode and see what it looks
like without having to alter anything apart from the MODE
statement. For example, 320,200 is a point in the middle of the

12 Amstrad graphies

screen no matter what mode you are using. However, because
there are more co-ordinates than there are pixels some co
ordinates actually refer to the same pixel. For example, in mode 1
there are 320 pixels horizontally and twice as many horizontal co
ordinate values. This means, for example, that the co-ordinate 0,0
refers to the same pixel as 1,0. In this mode if you start off from
x,y you have to increase the x co-ordinate by 2 before you can be
sure of reaching a new pixel, see fig. 1.3. In the same way, since
there are 200 vertical pixels in any mode and twice this number,
i.e. 400, of vertical co-ordinates you have to increase y by 2 before
you can be sure of reaching a new pixel. This phenomenon is
usually referred to as 'aliasing', because each pixel has more than
one 'name'. The amount by which you have to increase a co
ordinate before you are sure of reaching a new pixel is a very
important quantity, because it is not worth changing a co
ordinate by less than this amount. For example, if you are
drawing a straight line in mode 0 by changing the colour of each
pixel in turn (an easier way will be explained later) then, if you
didn't think carefully, you might use something like

Fig 1.3 A pixel in mode 1

Pixel graphics 13

10 MODE 0
20 Y=200
30 FOR X=0 TO 639
40 GOSUB 1000
50 NEXT X

where, for simplicity, we assume that subroutine 1000 will change
the colour of the point at X,Y. The trouble with this program is
that it changes the colour of each point no less than FOUR times!
It starts off by plotting the pixels at

0,200 1,200 2,200 3,200

However in mode 0 there are only 160 distinct pixels in any
horizontal lines and so all of the above co-ordinates refer to the
same pixel. While this program will produce a line it does far
more work than is necessary. The correct solution is to change
line 30 to

30 FOR X=0 TO 639 STEP 4

which will plot each pixel only once. In other applications careless
use of co-ordinates that results in treating the same pixel more
than once can even give an incorrect result, as well as wasting
time. The amount by which you have to change a co-ordinate to
be sure of reaching a new pixel can be called the 'graphics
increment' and it is worth making a table to show its value in each
mode

Mode X increment Y increment

0 4 2
1 2 2
2 1 2

In practice, when you are drawing large objects you can forget
about the X and Y increments and treat the screen as if it really did
have 640 by 400 pixels. However, some of the unexpected results
that you might see when using high resolution commands could
be the result of trying to use more pixels than are really there!

The graphics cursor
One of the most important ideas in using high resolution graphics
is the graphics cursor. In the same way that the text cursor moves

14 Amstrad graphies

around the screen in response to LOCATE, the Amstrad main
tains a graphics cursor that moves in response to the high
resolution commands. The only real difference is that the graph
ics cursor isn't made visible by a solid block. However, it is easy to
keep track of where the graphics cursor is, because it will always
be found at the position of the last pixel that was mentioned in a
high resolution graphics command. The current position of the
graphics cursor is often made use of in high resolution graphics
commands.

The high resolution graphics commands - MOVE, PLOT
and DRAW
There are only three high resolution graphics commands and
their action is easy to understand. The command

MOVE X, Y

will move the graphics cursor to X,Y without changing anything
on the screen. The command

PLOT X, Y

will move the graphics cursor to X,Y and change its colour to the
current graphics foreground colour and the command

DRAW X,Y

will move the graphics cursor along a straight line from its current
position to X,Y changing all the pixels that it passes over to the
current graphics foreground colour.

The three operations described above are known as 'absolute'
operations. Absolute operations interpret the x,y co-ordinates
given in the most obvious way - as the co-ordinates of a point on
the screen. In addition to the three absolute commands there are
also three 'relative' commands - MOVER, PLOTR and DRAWR.
The relative commands use x and y as displacements from the
graphics cursor's current position. For example,

PLOT X,Y

is an absolute command that will set the pixel at X,Y to the current
graphics foreground colour but

Pixel graphics 15

PLOTR X,Y

is a relative command and if the graphics cursor is at xg,yg this
will set the pixel at xg+X,yg+Y to the current graphics fore
ground colour. You can think of relative commands as specifying
how far away from the graphics cursors's current position the
new point is. In practice both absolute and relative commands are
equally useful so it is worth being familiar with both.

As an example of using the absolute and relative graphics
commands together, consider the problem of writing a subroutine
that will draw a square of side H with its top left hand corner at a
given position X,Y. The first thing to do is to move the graphics
cursor to X,Y using an absolute MOVE command, then drawing
each of the four sides can be most easily accomplished using
relative DRAWR commands. That is

1000 MOVE X,Y
1010 DRAWR H, 0
1020 DRAWR 0. -H
1030 DRAWR -H. 0
1040 DRAWR 0, H
1050 RETURN

To see the true value of relative commands you should try to
write the above subroutine using only absolute commands.

It is worth noting that if you use co-ordinate values that are off
the screen then, rather than generate an error message, the
Amstrad does what you ask - it carries out the MOVE, PLOT or
DRAW command but off the screen where you cannot see it.
Perhaps more surprisingly, if part of a DRAW command is on the
screen and part off then the part on the screen will be completed
successfully. In this sense the graphics screen is a sort of window
onto a virtually unlimited screen.

Controlling high res colour
The ideas of logical and physical colours apply just as much to
high resolution graphics as to character graphics - that is the INK
command is still used to associate the logical colours available in
any given mode with the actual physical colours that will be
displayed. Another similarity is that the graphics commands also
work in terms of a foreground and background colour but these
are independent of the foreground and background colours used
in character graphics and set by PEN and PAPER. The graphics
background colour is set by the

16 Amstrad graphies

CLG L

command which clears the graphics screen to logical colour L.
Following this a simple CLG command, i.e. one that doesn't
specify a colour, will clear the screen to logical colour L. This
should be compared to the command

CLS

which will clear the text screen to the current background colour
as set by the last PAPER command.

There isn't a special command to set the graphics foreground
colour. Instead it can be specified as part of the PLOT, PLOTR,
DRAW and DRAWR commands. For example

MOVE 0,0: DRAW 100,100,L

draws a line from 0,0 to 100,100 in logical colour L. Following this
any PLOT, PLOTR, DRAW or DRAW command that doesn't
specify a new graphics foreground colour will use colour L. In
other words, specifying a graphics foreground colour in any
graphics command sets it as the default foreground colour for all
subsequent commands.

The control codes

The ASCII codes from 0 to 31 are 'control codes' in the sense that,
instead of producing shapes on the screen, they act as commands.
For example ASCII code 12 will clear the text screen. That is

PRINT CHR$(12);

has the same effect as

CLS

A complete list of the control codes can be seen in Chapter Nine
of the 'User Instructions'. Some of the control codes have to be
followed by a number of parameter codes to indicate exactly what
should happen. For example, control code 14 has the same effect
as the PAPER command and has to be followed by another code
in the range 0 to 15 to indicate which logical colour should be
assigned to the background. That is

The control codes 17

PRINT CHR$(14);CHR$(L);

has the same effect as

PAPER L

Not all of the control codes are equivalent to BASIC commands
and these are important because there is no other way of
achieving the same effect. Two of these codes of particular
interest, CHR$(22) transparent paper and CHR$(23) ink mode,
are described in a later section.

It is worth noticing that it doesn't matter how the control codes
are generated and it is not necessary to group codes in a single
PRINT statement. For example, to define a graphics character in
the form of a solid block you can use either

10 SYMBOL 2&0,&FF,&FF,&FF,&FF,&FF, &FF, &FF, &FF

or

10 PRINT CHR$(25);CHR$(2U0) !
20 FOR 1=1 TO 8
30 PRINT CHR$(&FF);
U0 NEXT I

All that matters is the order in which the codes are printed.

Using the ink mode
Control code 23 can be used to set the way that graphics
foreground colour is applied to the screen. Normally if a high
resolution graphics command such as PLOT is used to set a pixel
to a given colour then that is exactly what happens - the pixel is
set to that colour no matter what colour it was before the
command. By changing the graphics ink mode, however, it is
possible to make the colour to which a pixel is set depend on the
colour it already is and the colour you are trying to set it to. This is
a rather complicated idea but it does open up a number of
powerful graphics techniques so it is worth studying more
carefully. The graphics ink mode is set by

PRINT CHR$(23);CHR$(m);

where m is a parameter that determines exactly how the Amstrad
affects pixels on the screen during a high resolution command. If

18 Amstrad graphies

m is 0 then the standard or normal graphics mode is put into
operation. This simply means that PLOT will change the pixels it
affects to the current foreground colour. Apart from this the rest
of the modes are difficult to understand fully without a little
knowledge of binary numbers.

For m equal to 1, 2 or 3 the colour that a pixel will be set to as
the result of a high resolution command depends on its initial
logical colour. The easiest way to explain how a pixel's current
logical colour and the current graphics foreground colour are
combined is in terms of the logical operators XOR, AND and OR.
The table summarises them.

Mode Action

1 new pixel colour=old pixel colour XOR current
foreground colour

2 new pixel colour=old pixel colour AND current
foreground colour

3 new pixel colour=old pixel colour OR current
foreground colour

If you draw a line in a given colour then at the moment the only
way you have of removing the line is to draw it again in the
current background colour. This method works as long as the line
does not pass over any areas that contain other foreground
points. However if you draw a line using the XOR ink mode then
drawing it a second time in exactly the same place will restore all
the pixels to their original colours. The use of the graphics ink
modes is described in more detail in later chapters.

Transparent paper
In the same way that the graphics ink mode can be used to control
the way foreground colour is applied to the screen, the trans
parent mode can be used to control the way background colour is
applied. Control code 22 followed by a 0 sets the normal paper
mode. In this mode any pixels that are supposed to be back
ground are set to the current background colour. However,
control code 22 followed by a 1 sets the transparent paper mode
and pixels that should be set to the current background colour by
an operation are left unaltered. In the Amstrad 464 the only
graphics command that sets pixels to the current background
colour is the PRINT statement - i.e. each character that is printed

The control codes 19

is composed of pixels that are either background or foreground
pixels. Thus in normal mode printing a character changes all of
the pixels within an 8 by 8 character block and each pixel is either
set to the current foreground colour or the current background
colour. In transprent mode, however, pixels are only changed to
the current foreground colour. Any that might have been set to
the background colour are left unaltered. This means that print
ing characters in transparent mode 'adds' them to the screen.
Anything already present is not obliterated by being set to the
current background colour. For example, try

10 MODE 1
20 PRINT CHR$(22);CHR$(1);
30 LOCATE 10,10
30 FOR 1=32 TO 255
U0 LOCATE 10,10
50 PRINT CHR$(I);
60 NEXT I

This program prints the entire character set in transparent mode
at the same place on the screen and the result is that all of the
pixels are eventually set to the foreground colour. If you would
like to see this program in normal mode then change line 20 to

20 PRINT CHR$(22);CHR$(0);

Setting a text window
It is often the case that an application would be made easier if it
was possible to divide the screen into a number of independent
areas. This is indeed possible using the command

WINDOW #S,L,R,T,B

where L,R,T and B give the position and size of the new text
screen or 'text window' as it is called. L is the position of the left
hand edge, R the position of the right hand edge, T the position of
the top and B the position of the bottom. The value of S is used to
give the text window a code number that can be used by
commands, such as LOCATE and PRINT, to indicate which
window they refer to. For example LOCATE #1,1,1 will locate the
text cursor in window number 1 to the top left hand comer. Once
a text window is established it can be used in exactly the same
way as the full text screen, subject to the limitations of its size and
shape. For example, you can clear a text window using CLS #S,
without clearing any other text windows. LOCATE #S,X,Y works
in a similar way, measuring its position from the top left hand

20 Amstrad graphies

corner of text window S. In fact a text window is just like a small
version of the entire screen.

As an example of how multiple text windows can be used try
the following program which sets up two text windows and
alternatively prints the numbers 1 to 100 on each.

10 MODE 2
20 WINDOW #1,10,20,1,25
30 WINDOW #2,30,40,1,25
40 FOR 1=1 TO 100
50 PRINT #1,I
60 NEXT I
70 FOR 1=1 TO 100
80 PRINT #2,I
90 NEXT I

Defining a graphics screen - ORIGIN
In the same way that you can define a number of independent
text screens you can also define a graphics screen. This is defined
using

ORIGIN X,Y,L,R,T,B

where L,R,T and B define the position of the graphics screen in
terms of the usual graphics co-ordinate system (L, R, T and B
define the left, right, top and bottom edges of the screen respect
ively). The first two parameters, X and Y define the position of the
point 0,0 or the origin within the new graphics window. Notice
that the co-ordinate system within a graphics window isn't scaled
to take account of the size of the window. That is, if you define a
graphics window

ORIGIN 0,0,100,200,200,100

then the bottom left hand corner of the window is 100,100 and the
top right hand corner is 200,200. However if you shift the origin
using

ORIGIN 100,100,100,200,200,100

then the bottom left hand corner is 0,0 and the top right hand
corner is 100,100. Apart from moving the origin, the only real
effect of defining a graphics window is to limit the area of the
screen that the high resolution graphics commands effect. So for
example, if you have one half of the screen defined as a graphics
screen and the other half defined as a text screen then a CLG

Defining a graphics screen 21

command will clear the graphics half to the current graphics
background colour and a CLS command will clear the text half to
the current text background colour. Of course if a text screen is
defined inside the graphics screen then clearing the graphics
screen will also clear the text screen. Similarly, clearing a text
screen that contains the graphics screen will also clear the
graphics screen. You can think of a text screen as an area of the
display where the text commands control what happens and the
graphics screen as an area where the graphics commands control
what happens. An area where they overlap will be affected by
both sorts of command. The command

ORIGIN X,Y

can be used to move the location of the origin to any other
position without defining a new graphics window. For example,
following

ORIGIN 320,200

the point 0,0 is in the middle of the screen. Moving the centre of
the co-ordinate system like this doesn't affect anything already
drawn on the screen but it does move the graphics cursor to the
new origin.

Finding out what's on the screen - TEST and TESTR
The function TEST can be used to find out what colour pixel is on
the screen at any given high resolution position. The general form
of the TEST function is

TEST(X,Y)

where X,Y is the point concerned. There is also a relative form of
the TEST function

TESTR(X,Y)

where xg+X,yg+Y is the point concerned (xg,yg is the position of
the graphics cursor). The value returned by TEST or TESTR is the
logical colour of the pixel specified or the current graphics
background colour if the co-ordinates are off the screen.

Text as graphics - TAG and TAGOFF
So far the emphasis has been on how separate the text and
graphics screens are but it is often the case that a display

22 Amstrad graphies

produced with user-defined graphics would benefit from a high
resolution line drawn on it. As long as the text and graphics
screens overlap then this is quite possible. However, there is the
problem of reconciling the two co-ordinate systems. For example,
how do you draw a high resolution line between two text
characters? The problem is made worse by the fact that the text
co-ordinate system changes according to what mode you are
using! However, you can work out the relationship between the
two co-ordinate systems simply by examining the text co
ordinates of a character printed in the bottom left hand corner of
the screen. The bottom left hand corner of the character is at
graphics position 0,0 and the character is at LOCATE 1,25. The
bottom left hand corner of a character one position up, i.e. at
LOCATE 1,24 is at graphics position 0,0+char_height where
char_height is the height of a character in terms of the graphics
co-ordinates. In all the graphics modes char_height is 16 units. In
the same way, the graphics co-ordinate of the bottom left hand
corner of a character at LOCATE 2,25 is 0+char_width,0. The
only trouble is char_width varies according to the mode as
indicated in the table.

mode char_width

0 32
1 16
2 8

Using all this information we can write two equations that will
give the graphics co-ordinate of the bottom left hand corner of a
character at LOCATE X,Y

graphics X=(X-l)*char_width
graphics y=400-16*Y

If you want to find the graphics co-ordinates of a point other than
the bottom left hand corner within a text character then simply
add the appropriate fraction of char_width and char_height to the
x and y graphics co-ordinates respectively. For example, to find
the middle of a character add char_width/2 to the x co-ordinate
and char_height/2 to the y co-ordinate.

Using the high resolution commands to add details to a low
resolution or text display is the most common way of combining
high and low resolution graphics. However, it is sometimes

Text as graphics 23

useful to be able to PRINT a user-defined character at a location
on the graphics screen. This can be achieved, but doing so may
bring with it a little more than you really wanted. Following

TAG

any difference between the text and graphics screens vanishes. To
be more exact, the graphics screen is the only screen available.
Printing characters on the screen is controlled by the rules of the
graphics screen. For example, the current printing position is
controlled by the graphics cursor which is moved on by eight
horizontal pixels after each character is printed so that lines of text
may be formed. Also the foreground and background colours are
controlled by the current graphics foreground and background
colour rather than PEN and INK. Even the graphics ink mode
now affects the way that characters are printed. Indeed the best
way to sum up the situation following a TAG command is to say
that the text screen operates according to the rule of the graphics
screen.

The only other thing to be aware of when printing chracters on
the graphics screen is that the graphics cursor sets the position of
the top left hand corner of the character. So for example,
following TAG the short program.

MOVE 0,0:PRINT "A”

will result in printing the A just off the bottom of the screen. The
command

TAGOFF

restores the printing of text at the position of the text cursor.

Graphics on the 664

If you want to maintain compatability with the Amstrad 464 then
you should only use the commands described above. However
the Amstrad 664 does have a number of extra graphics commands
and slightly more powerful versions of the familiar ones. The
main change is in the handling of the graphics foreground and
background colours, the graphics ink mode and the transparent
paper mode. In the 664 all of the high resolution graphics
commands are of the form

24 Amstrad graphies

command X,Y,L,M

where command is one of MOVE, MOVER, PLOT, PLOTR,
DRAW or DRAWR. X and Y specify the graphics position in the
usual way, L is the logical colour to be used as the foreground
colour and M is the graphics ink mode. (Both L and M are
optional parameters.) This means that unlike the 464 the MOVE
and MOVER commands can be used to set the graphics fore
ground colour and there is no need to use control codes to set the
graphics ink mode. The control codes still work but instead of
writing

PRINT CHR$(23);CHR$(M);

you can now write

MOVE X,Y,L,M

(where MOVE could be any of the high resolution commands).
The 664 also has a pair of commands that allow the graphics

foreground and background colours to be set explicitly. The
commands

GRAPHICS PEN L,T

and

GRAPHICS PAPER L

will set the graphics foreground and background colours respect
ively and set the paper transparency to T.

Other graphics commands that are present in the 664's version
of BASIC and their functions are as follows:

MASK P,F Sets the pattern of dots that make up a line to P,
i.e. it enables the drawing of dotted lines.
If F is 1 then the endpoints of a line are drawn.
If it is 0 then the endpoints are not drawn.

FRAME Waits for the start of the next TV frame.
464 users get the same effect by CALL &BD19.

FILL L Fills an area bounded by the current graphics
foreground colour with colour L starting from
the current graphics cursor position.

Graphics on the 664 25

COPYCHR$ A function that returns a string containing the
character under the current position of the text
cursor.
If the character cannot be recognised then a null
string is returned.

Some of these commands are described, along with the way that
their effects are obtained on the 464, in later chapters.

Conclusion

The Amstrad's graphics system may sometimes seem a little
complicated. However, the system is very logical and if you
concentrate on seeing the way in which it works rather than
memorising commands you should find it easy. In the rest of this
book the emphasis falls on graphics methods, rather than tricky
ways of using the Amstrad, but there are a great many novel
ways of using the graphics commands introduced along the way.
If at any time you forget what a command does, then you will find
the Graphics Commands table in Appendix I a useful resume.

2 Animation in text mode
using sprites

Animation is one of the most enjoyable areas of computer
graphics. The most obvious application is in the production of
action computer games, but it also turns up in many other more
serious programs. So, even if you are not interested in computer
games it is worth knowing how animation works. The basic
method of animation is simple, but if it is applied without care the
result can be a messy program that produces very poor move
ment. In this chapter the idea of a 'sprite' is introduced as a way
of organising the movement of a number of objects on the screen.
To make things easier at first only character graphics will be used.

Blanking animation
The standard method of making things move in a computer
display is fairly well known even to novice programmers. To
move a shape on the screen you first draw it at one location, then
remove it or 'blank' it out, and then redraw it slightly shifted. The
smoothness of the apparent motion produced by this blanking
animation depends on a number of interacting factors. The
following guidelines should aid the production of smooth move
ment:

1 The distance moved at each step should be small.
2 The time taken to blank and produce the shape should also be
small.
3 The shape should be displayed on the screen for as long as
possible between moves.
4 For really smooth motion each step should be synchronised
with the TV frame display rate.
5 The perceived smoothness is also affected by the shape, colour
and texture of the object.

The trouble is that, in practice, most micros are too slow to
26 produce smooth animation using BASIC. Even using assembler, a

Sprites 27

great deal of care and attention is needed to produce a flicker-free
screen. The problem increases as the number of separate objects
being moved increases. Normally animation is developed in a
haphazard way, with each moving object being added to the
program in turn, perhaps even using a completely different
method for each. Ido we ver, there is a way of organising the
animation of any number of small shapes that is entirely system
atic.

Sprites

Once you start writing programs to produce animation you soon
learn that the best way to think of the path that a moving object
takes is by using the idea of velocities. Velocity can be thought of
as 'speed in a given direction' and so it summarises two elements
of movement, rate of travel and direction of travel. So, for
example, if an object is moving smoothly in a straight line across
the screen it can be associated with four quantities

X - its present x co-ordinate
Y - its present y co-ordinate
XV - its x or horizontal velocity
YV - its y or vertical velocity

In other words, at any given point in the program the object is at
the position X,Y and its next position will be X+XV,Y+YV. The
use of velocities makes it particularly easy to update the current
position to give the new position using nothing but addition -
which is one of the fastest operations that any computer can
perform. In practice, moving an object about the screen rarely
involves nothing but motion in a straight line! Fortunately it is not
difficult to extend the use of velocities to produce all types of
movement.

A small graphics shape together with its current position and a
pair of velocities is usually called a 'sprite'. (They are also known
as 'MOBs' standing for 'Movable OBjects'.) This sort of sprite is
the simplest used in animated graphics and in practice the idea is
elaborated considerably. Sprites are often associated with special
graphics hardware that will automatically update positions and
plot the shape on the screen. However, while sprite hardware
does make things easier and faster, software sprites are also
useful in writing programs on even the least sophisticated com
puter.

28 Animation in text mode using sprites

Acceleration
Before giving an example of how sprites can be used it is
necessary to introduce the idea of acceleration. As already noted,
it is rare that objects move smoothly in straight lines. For one
thing they tend to go off the edge of the screen! In practice objects
change their velocity as they move across the screen, sometimes
continuously as in the case of a ball or a lunar lander 'falling' in an
arc down the screen, and sometimes suddenly as in the case of an
object 'bouncing' off the sides of the screen. However, the
common factor is that the velocity does change and a change in
velocity is usually called an 'acceleration'. This suggests that to
make sprites really useful the number of quantities associated
with a sprite should be increased to six by adding a horizontal and
a vertical acceleration, XA and YA. Now at each stage the current
position is updated by

X=X+XV
and
Y=Y+YV
and the velocities by
XV=XV+XA
and
YV=YV+YA

This method does indeed work for movements that involve
smooth changes in an object's velocity, but what about the
sudden changes involved in an object 'bouncing' off another
object? To take this sort of sudden change into account we have to
introduce yet another idea - that of a 'force function'. A force
function defines the way that acceleration depends on current
position, current velocity, current acceleration and any other
conditions that you might want to take into account! It is easier to
understand the way that a force function controls the movement
of a sprite by looking at an example. But first it is worth
summarising the definition of a simple sprite. A Sprite is com
posed of the following information

1 The shape of the object.
2 The current position stored in X and Y.
3 The velocities XV and YV.
4 The accelerations XA and YA.
5 The force function that is used to update accelerations.

A simple sprite example
To illustrate the ideas introduced so far the simple and well

Sprites 29

known problem of bouncing a ball around the screen is a good
starting point. However to make the problem a little more
obvious, consider the problem of bouncing more than one ball at
a time. In fact the program given below will bounce any number
of balls around the screen if you don't worry about how fast (or
rather how slowly) everything moves!

The first part of constructing the program involves defining a
suitable sprite for the bouncing ball. The shape of the ball is easily
solved by using graphics character given by CHR$(231) stored in a
string S$. In other words, PRINT S$ produces the ball shape on
the screen. Its current position can be stored in X and Y and its
current velocity in XV and YV. The problems really only start
when you try to work out what the acceleration should be. When
the ball is moving about the screen away from the wall the answer
is easy - both horizontal and vertical acceleration are 0. However,
when the ball is near, or to be more accurate touching, the edge of
the screen the acceleration is clearly not zero because the one of
the ball's velocities will be reversed to create the bounce. If the
ball meets a horizontal wall then YV is changed to -YV, if it
meets vertical wall then XV is changed to —XV. In terms of
acceleration this implies

IF the ball is in contact with a horizontal wall THEN
YA=—2*YV ELSE YA=0
IF the ball is in contact with a vertical wall THEN
XA=—2*XV ELSE XA=0

To turn these two IF statements completely into BASIC requires
only that the test for horizontal and vertical walls is made exact. If
the vertical walls are placed at X=1 and X=40 and the horizontal
walls at 1 and 25 (i.e. at the edges of a mode 1 screen) then the
tests can be written

IF Y=1 OR Y=25 THEN YA=-2*YV ELSE YA=0
IF X=1 OR X=40 THEN XA=2*XV ELSE XA=0

You should recognise these two IF statements as the force
function for the ball because together they determine the acceler
ation at each update. In most cases however there is one addition
that has to be made to IF statements that test for a collision with a
wall or any other object on the screen. The problem is that during
one of the position updates the sprite could have moved
'through' the wall and the test should take this into account. Also
if the sprite has moved through a wall it really ought to be moved
back to the correct side. If these considerations are taken into
account the tests become

30 Animation in text mode using sprites

YA = 0
XA=0
IF Y<=1 THEN Y=1:YA=—2*YV
IF Y>=25 THEN Y=25:YA=-2*YV
IF X<=1 THEN X=1:XA=—2*XV
IF X>=40 THEN X=40:XA=-2*XV

(Notice how the ELSE part of the IF statements has had to be
replaced by the default setting of YA and XA before the tests are
carried out.)

Now all that remains is to put all of the parts of the sprite
together to produce the program. However, the whole point
about using sprites is that once you have defined a sprite for an
object it is easy to re-use the definition to produce any number of
examples of the sprite moving around the screen. All that you
have to do is to replace each of the variables associated with the
sprite by an array large enough to hold the information for each
sprite. For example, if you want five balls bouncing round the
screen then use X(l) to X(5) to record the current x co-ordinate of
each sprite. X(l) is the x co-ordinate of the first example of the
sprite, X(2) the x co-ordinate of the second and so on. The
resulting program is surprisingly easy

10
20
30
ne
50
60
70
80
90
100
110
120

REM sprite animator
MODE 1:BORDER 26
PRINT "HOW MANY SPRITES
INPUT NX
CLS
GOSUB 1000
WHILE TIME-RTIME<10000
GOSUB 2000
GOSUB 3000
TX=TX+1

WEND
END

1000
1010
1020
1030
10Ì10
1050
1060
1070
1080
1090
1100

REM init
DIM S$(NX),X(NX).Y(NX),XV(NX),YV(NX)
DIM XA(NX),YA(NX),PX(NX).PY(NX)
FOR IX=1 TO NX
S$(IX)-CHR$(231)
X(IX)=INT(RND*37+2)
Y(IX)=INT(RND*22+2)
PX(IX)=X(IX)
PY(IX)=Y(IX)
XV(IX)=SGN(RND-0.5)
YV(IX)=SGN(RND-0.5)

Sprites 31

1110
1120
1130
1140
1150
1199

XA(IX)=0
YA(IX)=0

NEXT IX
RTIME-TIME
TX-0
RETURN

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2999

REM animate
FOR IX-1 TO NX
pxcix)-x(ix)
PY(IX)-Y(IX)
X(IX)-X(IX)+XV(IX)
Y(IX)=Y(IX)+YV(IX)
XA(IX)-0
YA(IX)-0
IF X(IX)<-1 THEN X(IX)=1:XA(IX)=-2*XV(IX)
IF X(IX)>-40 THEN X(IX)-40:XA(IX)—2*XV(IX)
IF Y(IX)<=1 THEN Y(IX)=1: YA(IX)—2*YV(IX)
IF Y(IX)>=25 THEN Y(IX)=25:YA(IX)—2*YV(IX)
XV(IX)=XV(IX)+XA(IX)
YV(IX)-YV(IX)+YA(IX)

NEXT IX
RETURN

3000
3010
3020
30303040
3050
3999

FOR IX-1 TO NX
LOCATE PX(IX),PY(IX)
PRINT SPC(l);
LOCATE X(IX),Y(IX)
PRINT S$(IX);

NEXT IX
RETURN

Subroutine 1000 simply initialises all of the arrays, X(I) and Y(I)
are sprite I's position, XV(I) and YV(I) are its velocities and XA(I)
and YA(I) are its accelerations. The arrays PX and PY are used to
hold each sprite's previous position. The sprites all start off from
random positions and velocities. Subroutines 2000 and 3000
perform the animation, 2000 updates all of the sprite values and
3000 blanks and reprints each sprite in turn.

The power of the sprite method of organising animation
programs should be clear from the economy and simplicity of the
above program. However, the sprite method also leads to pro
grams that are easy to modify. For example, if you want to add
some 'gravity' to the bouncing balls so that they fall in a parabolic
arc and then bounce back up to the same height change line 2070
to

2070 YA-0.2

32 Animation in text mode using sprites

The only change is to set the vertical acceleration to a small
constant to mimic the effect of gravity.

Other changes are equally simple. For example, if you want to
make the balls bounce less each time change lines 2100 and 2110
to

2100 IF Y(IX)<=1 THEN Y(IX)=1 : YA (IX) —1. 9'9*YV (IX)
2110 IF Y(IX)>=tt0 THEN Y(IX)=U0: YA(IX)=-l.99*YV(IX)

where the — 1.99*YV reflects a reduction in the vertical velocity on
each (horizontal) bounce. You can make each of the sprites have a
different shape by adding

10U0 S$(IX)-CHR$(231+IX)

You could even attach a colour code, a sound to be produced at
each bounce, etc to the sprites - but more of this later.

Priorities, collisions and events

You may be thinking that bouncing balls around the screen, no
matter how many, hardly demonstrates that sprites are a vital
tool. However, once you start exploring some of the additional
ideas that suggest themselves and seem natural when you work
with sprites, it becomes difficult to believe that you ever thought
about animation in any other way! For example, the order in
which you blank and draw sprites imposes a natural priority on a
collection of sprites. A later sprite will appear to pass in front of
an earlier sprite if they both happen to reach the same screen
position. This is simply because the later sprite will overwrite the
earlier one but it leads to a way of ordering sprites so that when
they meet you can predict what the result will look like. The idea
of one sprite passing over another one leads naturally on to the
idea of sprite-sprite collisions. At the end of all sprite moves it is
easy (but time consuming in BASIC) to check to see if any of the
sprites are in the same position and so have collided. A sprite
collision is usually dealt with by a special subroutine. For ex
ample, if one of the sprites is a rocket and the other a target then,
when a sprite-sprite collision is detected, the obvious thing is to
call a subroutine that produces an explosion!

This idea of a collision causing something different to happen
within the program is similar to what happens during a hardware
interrupt. Interrupts are normally used to inform the computer
that something unusual or important that needs special attention

Priorities, collisions and events 33

has happened in the outside world. This is exactly what happens
with a sprite collision, except that the event is internal. The idea
can be generalised to sprite events which correspond to any
detectable condition that should cause the program to do some
thing different. For example, the sprite bounce from the bound
ary wall that was controlled by the force function could have been
declared a sprite event that, when detected, called a subroutine
that reversed the velocity and perhaps made a noise. There is
often more than one way to animate a sprite and the number of
ways increases as the idea of a sprite becomes more and more
elaborate. Some of these ideas are described later but there is a lot
to be gained from trying to keep sprites simple - especially in
BASIC!

The animation loop
So far the question of the best way to implement sprites has not
been discussed. It may come as something of a surprise to
discover that there are a number of different ways of implement
ing the sprite idea and they differ in terms of their simplicity and
their efficiency.

All animation is done in terms of an 'animation loop'. The only
real question is how much should be done each time through the
loop. In the ideal animation loop all of the sprites' variables would
be updated, then all of the sprites would be blanked and
reprinted at their new positions. In this case a loop counter or
animation counter, T say, would represent the number of times
all of the sprites had moved. In many applications the value in T
can be treated as a measure of the time that the program has been
running. Before this loop is repeated again a routine is used to
check for any sprite events - collisions etc - that might have
occurred. If an event is detected then a special part of the program
is called that handles the event. What happens after this handling
depends very much on its nature. Some events signal the end of
the program and others cause the animation loop to be restarted.

The only trouble with this ideal animation loop is that it
assumes that the time to do the sprite updates is short. In fact if
this time is much longer than one or two TV frame periods the
user begins to see the sprites moving in a stop-start, jerky way. Of
course if you are using BASIC then this is almost certain to be the
case and a modification to this fast animation method is called for.
In the 'sprite at a time' animation loop only one of the sprites is
moved each time through the animation loop. Thus if there are N
sprites it takes N times through the loop before they are all
updated. In this case the loop counter no longer records the total
number of times all of the sprites have moved and it cannot be

34 Animation in text mode using sprites

interpreted as a simple time variable. Notice that it is important to
check for any sprite events after all of the sprites have been
updated. The reason for this is that it is essential to check for
sprite events on the basis of the screen as it appears to the user.
For example, if you checked for a collision between two sprites
during the animation loop, the chances are that you would
incorrectly detect a collision between the new position of one
sprite and the old position of the other! If you would like to see
the effect of 'a sprite at a time' animation make the following
changes to the original sprite program

90 REM
2140 LOCATE PX(1%).PY(1%)
2150 PRINT SPC(l);
2160 LOCATE X(IX),Y(IX)
2170 PRINT S$(IX);
2180 NEXT 1%

The ideal animation loop is the better of the two methods
because the user never sees the screen in an intermediate state,
with some of the sprites in their old positions and some in their
new positions. However if you are using BASIC or animating a
great many sprites then the 'sprite at a time' method is the only
way of producing smooth animation.

A classic example - the space invader sprite
You might be thinking that some of the examples of moving
graphics that you have seen would be difficult to implement
using sprites. This is not the case. None of the animated displays I
have seen is difficult to interpret in terms of sprite graphics, with
a little practice. For example, consider the traditional space
invaders screen with alien ships in rows moving from side to side
and then slowly moving down the screen. How can this almost
static movment be translated into sprites? The answer is surpris
ingly easy! Change the following lines in the original bouncing
balls program

1050 x(ix)=i*3
1060 Y(IX)=2
1090 XV(IX)=2
1100 YV(IX)=.l
2070 YA(IX)=0
2080 XA(IX)—2*XV(IX)
2090 REM
2060 XA(I)=-2*XV(I)

The space invader sprite 35

The only changes are to the initial positions and velocities of the
shapes and to the force formula. The initital positions are set to
produce a single row of shapes by line 1050 and 1060. Lines 1090
and 1100 set a horizontal velocity of 2 and a vertical velocity of .1.
As you might expect, this results in a large sideways velocity but a
very small vertical velocity making the row creep forward. Line
2080 is responsible for the side to side oscillation because it
reverses the velocity at each update. You should now be able to
see how this method could be extended to more than one row and
how to make the 'ships' move faster down the screen as the game
progresses without having to use a single non-sprite idea!

Practical animation - integer variables
In practice the main concern of any animation program is speed.
The faster you can make the animation loop run the more sprites
you can animate. To this end, it is standard practice to use integer
variables, rather than real variables, wherever possible. Integer
variables are certainly capable of holding the co-ordinate range of
both the high and low resolution screens and they are always
faster, so you may be wondering why they cannot always be used
in preference to the slower real variables. The answer is that for
most sprite applications at least one of the positions, velocity or
acceleration variables is fractional, and hence cannot be stored in
integer variables. This need to use real variables can present
something of a problem if you attempt to gain a speed increase by
using assembler. The reason is that real arithmetic is very difficult
to carry out using assembler without a great deal of program
ming. However it is usually possible to avoid using real arithmetic
by working with every value multiplied by a suitable 'scale factor'
large enough to remove any fractional part that might occur.

Internal animation
One of the most impressive features of 'space invaders' on many
computers is the way that each of the invaders 'waves its arms' as
they move from side to side. So far all the sprites that have been
described have kept their shape fixed as they moved. However,
internal animation, as exemplified by space invaders, is not
difficult to achieve, and what is more surprising, adds very little
to the complexity or time taken to animate a sprite.

The key to internal animation is to replace the string that holds
the single shape normally associated with a sprite by a string
array that holds a range of shapes. The shapes stored in the array
form a sequence that will produce the desired internal animation.
As the sprite moves around the screen the animation counter T is
used to generate an index that governs which of the shapes will

36 Animation in text mode using sprites

be printed on the screen by the animation loop. Perhaps the
easiest way to explain this idea is by way of an example.

The following program will animate a little man-shaped figure
as it falls toward the bottom of the screen. The internal animation
takes the form of making the man tumble as he falls. The
sequence of shapes necessary to implement this internal anima
tion can be seen in fig 2.1.

**X*X*Jc*
Fig 2.1 Sequence of shapes needed to animate the tumbling man

The full animation sequence involves eight different stages.
First shape 0 is used then shape 1 and so on to shape 7 then the
whole cycle repeats itself. Thus if the shapes are stored in the
array S$(7) the animation sequence is S$(0), S$(l) . . . S$(7), S$(0)
and so on. Using this arrangement the animation counter can
easily be used to select the correct shape during the animation. In
other words if the animation counter starts from 0 we have

T= 0123456789
Use S$(0) S$(l) S$(2) S$(3) S$(4) S$(5) S$(6) S$(7) S$(0) S$(l)

If you look at this pattern carefully you should be able to see that
the index of the array is simply the remainder when you divide T
by 8, that is T MOD 8. This is exactly the method used to select
which shape should be displayed using the animation counter. If
the internal animation sequence consists of N shapes then the
index is simply the remainder after dividing the animation
counter by N.

Returning to the tumbling falling man program this gives

10 REM internal animation
20 MODE 1
30 GOSUB 1000
40 GOSUB 2000
50 WHILE Y<24
60 T%=TX+1
70 FOR I%=1 TO 300:NEXT IX
80 GOSUB 3000
90 GOSUB 4000
100 WEND
110 END

The space invader sprite 37

1000 REM set up
1010 INK 0,0
1020 INK 1,26
1030 PEN 0
10Z10 PAPER 1
1050 CLS
1999 RETURN
2000 REM init
2010 SYMBOL 2¿10, &18, &DB, &7E, &18, &3C, &66, »¿12, »¿12
2020 SYMBOL 2ill, &33, »IF, &E, &7E, &CB, &89, &18, &30
2030 SYMBOL 2¿l2, &3, &E6, &3U, &1F, &1F, &3U,&E6,&3
20U0 SYMBOL 2¿l3, »30, &18, &89, &CB, &7E, &E, &1F, &33
2050 SYMBOL 2ilit, »¿¿2, »¿12, &66, &3C, &18, &7E, &DB, &99
2060 SYMBOL 2¿15,&C, »18, &91. &D3, &7E, &70, &F8, &CC
2070 SYMBOL 2il6, &C0, &67, &2C, &F8, &F8, &2C, &67, &C0
2080 SYMBOL 2¿17, &CC, &F8 , &70, &7E, &D3, &90, &18, &C
2100 DIM S$(7)
2110 FOR IX = 0 TO 7
2120 S$(I%)=CHR$(2U0+I%)
2130 NEXT IX
2160 X=10
2170 Y = 3
2180 XV = 0
2190 YV = 1
2200 XA=0
2210 YA = 0
2990 RTIME=TIME
2999 RETURN
3000 REM update
3010 XP=X:YP=Y
3020 X=X+XV
3030 Y=Y+YV
30U0 XV=XV+XA
3050 YV=YV+YA
3999 RETURN
¿1000 REM reprint
¿1010 R=TX MOD 8
¿1020 LOCATE XP.YP:PRINT "
¿1030 LOCATE X.Y:PRINT S$(R);
U999 RETURN

Subroutines 1000 and 2000 initialise the display mode and the
sprite respectively. As there is only one sprite there is no need to
use arrays to store position, velocity and acceleration. Subroutine
3000 performs the usual sprite updates, and subroutine 4000
blanks out and reprints the sprite. The only real difference
between this program and the bouncing balls sprite program

38 Animation in text mode using sprites

given in the previous chapter is the way that the animation
counter is used to select which shape will be printed.

Notice that as the falling man only moves vertically there is
really no need to carry out any updates on the X position, velocity
etc. However to make the program completely general, if a little
slower than it need be, these unnecessary updates are included.
You can introduce internal animation to any number of sprites in
exactly the same way subject, of course, to the condition that you
can move everything fast enough. It is also possible to use other
variables than the animation counter to index the array of
different shapes. For example an animation of a walking man
might use the X co-ordinate to select one of a number of different
'walking positions'. However the animation counter serves for
most purposes.

Sprite events

The idea of a sprite event was introduced earlier - a sprite event is
any detectable condition that requires something other than the
standard animation sequence to handle it. The best way to
illustrate this idea is to add a simple event detector and handler to
the falling man program given in the last section. At the moment
when the man finally reaches the end of his fall nothing exciting
happens. To rectify this simply entails two extra subroutines.

95 GOSUB 5000
5000
5010
5020

REM detect event
IF Y>22 THEN GOSUB 6000
RETURN

6000
6010
6020

REM event
SOUND 1,1000,25,15,,,31
END

Subroutine 5000 checks if the man has reached the ground or not
and transfers control to the event handler, subroutine 6000, if he
has. In this case the event handler only makes an explosive noise
and then stops the program but in principle it could be a much
more complicated routine than this.

As a more complicated example, the following modifications to
the bouncing ball multiple sprite program given earlier will add a
crash noise each time a collision occurs and remove the pair of
sprites involved.

Sprite events 39

95 GOSUB 4000
4000
¿1010
4020
4030
4040
4050
4060
4070
4080

REM detect event
FOR IX-1 TO NX
IF S$(IX)="" THEN GOTO 4070
FOR JX=1 TO NX
IF IX-JX THEN GOTO 4060
IF X(IX)-X(JX) AND Y(IX)>Y(JX) THEN GOSUB 5000

NEXT JX
NEXT IX
RETURN

5000
5010
5020
5030
5040

REM event handler
S$(IX)-""
S$(JX)=""
SOUND 1,50,20
RETURN

The above lines should be added to the first version of the
bouncing ball program. The collision check routine, subroutine
4000, isn't the most efficient possible as it checks each pair of
sprites twice but it does have the advantage of being easy to
understand.

Explosions - terminal events!
The most common use of sprite events is to detect a condition that
implies the end of a game. For example, if a missile hits its target
then the sprite collision involved would signal the end of the
game. It is surprising how often end of game sequences involve
animated explosions. It is possible to write pages on how sprites
can meet their final end in spectacular explosions but the main
trouble is that most of them need the speed of assembler to be
effective. The simplest and quickest method to produce an
explosion is to define an explosion character that can be printed
over the current sprite's position. To define a good explosion
character is not difficult but you should try to avoid using too
many of the pixels near the edge of the character so that the
outline of the 8 by 8 character square is invisible.

More advanced methods of constructing explosions are nearly
all based either on making the explosion appear to grow by
painting a sequence of explosion characters or on using high
resolution graphics commands to make the pixels of the shape
appear to move apart. To do this smoothly and convincingly
needs assembler and indeed a good explosion routine can take an
unreasonable amount of code to produce! However, you might
like to try either of the following two explosion routines. The first
makes use of a short sequence of expanding explosion characters

40 Animation in text mode using sprites

10 MODE 0
20 SYMBOL 240,0,0,0,&01,&08,0,0, 0
30 SYMBOL 241,0,0,&04.&18,&18,&14,0,0
40 SYMBOL 242,0, &04,&24, &1C,&72,&14,&24,0
50 SYMBOL 243.&82,&24,&3C.&1C.&FC,&7A,&48,&85
60 FOR 1=240 TO 243
70 LOCATE 10,10
80 PRINT CHR$(I);
90 FOR J=1 TO 50:NEXT J
100 NEXT I
110 FOR J=1 TO 1000:NEXT J
120 GOTO 10

and the second simply plots radial lines from the centre of the
character

10 MODE 2
20 X-320
30 Y=200
40 DX=25-INT(RND*50)
50 DY-50-INT(RND*50)
60 MOVE X,Y
70 DRAWR DX.DY
80 GOTO 40

Notice that to use the above routine in a low resolution graphics
program involves converting low res co-ordinates to high res co
ordinates. In general explosion routines are very much improved
by good sound effects and this makes sound an even more
important components of BASIC explosions, to compensate for its
limitations of speed.

The outside world
Interactive control of sprites is such an obvious feature of nearly
every computer game that it is often dismissed as a small problem
of program implementation, when in fact it is quite central to the
success or otherwise of the game. The way that the user interacts
with the game is important because it sets the level and type of
skill required to be a successful player. A poor or inaccurate
method of controlling the sprites involved in the game simply
raises the frustration level of the user, because of the difficulty in
getting the sprites to do what is required. If you regularly play
computer games you cannot fail to have experienced the feeling
that you've pressed a key or moved the joystick in time to avoid
destruction but the sprite that you were controlling just didn't
take any notice! On the other hand an accurate and natural
method of controlling sprites produces a feeling of involvement

Sprite events 41

that may raise a run of the mill game to new heights of popularity.
The methods that you can use to control sprites are to a certain

extent governed by the hardware that you have available. The
main method of sprite control is the keyboard and so it is
important to look at the different way in which this can be used.

General sprite control

So far the sprite animation loop - blank sprites, update sprites,
plot sprites - has only been used to produce sprites that move
around the screen bumping into things and occasionally explod
ing. However, interactive animation programs must allow the
user a way of controlling at least one of the sprites in the display.
This causes no real problem for the theoretical framework of
sprite animation that has been constructed. The obvious place to
insert any user control is in the 'update sprite' part of the loop.
Also the theory implies that whatever method of control is used it
should be implemented as part of the force function. The sim
plicity of the sprite is partly due to the fact that its position and its
velocity are automatically updated in the same way each time
through the animation loop and any variation in motion comes
from the force function. It is also this fact that makes it easier to
implement sprites in hardware - the regular updating can be
carried out by hardware and the simple but more varied be
haviour of the force function can be left to the software. As has
already been demonstrated, it is possible to exercise any sort of
control over the motion of sprites using the force function but it
isn't always the most direct approach. In particular, user control
over sprites is rarely directly in terms of a force function and it is
usually more efficient, if a little less tidy, to alter the other
quantities associated with sprites. User control can be classified
according to which quantity is directly affected

Position - direct updating of the x and y co-ordinates
Velocity - direct updating of the x and y velocities
Acceleration - direct updating of the force function

Each of these types of control actually occurs in games and other
animation programs, each one has something different to offer
and, what is more surprising, each one is encountered often
enough to be considered as an important standard technique. For
this reason each one will be dealt with in turn.

Positional control
Updating the x and y co-ordinates directly is the simplest form of

42 Animation in text mode using sprites

control. When a keyboard is used as the input device every
possible direction of movement is associated with a particular
key. Each time through the animation loop the keyboard is
inspected and, according to which key is pressed, the position of
the controlled sprite is updated. For example

10 MODE 1
20 X=20:Y=20
30 LOCATE X.Y
40 PRINT SPC(l);
50 IF INKEY(0)=0 THEN Y-Y-l
60 IF INKEY(2)=0 THEN Y-Y+l
70 IF INKEY(l)-0 THEN X=X+1
80 IF INKEY(8)=0 THEN X=X-1
90 LOCATE X.Y
100 PRINT CHR$(231);
110 GOTO 30

This simple program animates a ball around the screen. The
INKEY function is used to test each of the cursor keys in turn (line
50 to 80) and the sprite's position is updated according to which,
if any, are pressed.

The only trouble with this method of moving something
around the screen is that it can take too long to move large
distances (particularly when something is being moved using
high resolution co-ordinates, see Chapter Three). If the amount
that was added to the X and Y co-ordinates was increased it
would allow the sprite to be moved large distances more quickly
but it would make the exact positioning impossible. The best
solution to this problem is to allow the use of two different
amounts by which the sprite can be moved. This may sound
complicated but it is very easy to implement if instead of updating
the X and Y co-ordinates directly the IF statements set increments
to be added to them. For example
10 mode 1
20 X-=20:Y = 20
30 LOCATE X.Y
U0 PRINT ”
50 DX=0:DY=0
60 IF INKEY(0)=0 THEN DY = -1
70 IF INKEY(2)=0 THEN DY=1
80 IF INKEY(1)=0 THEN DX=1
90 IF INKEY(8)=0 THEN DX=-1
100 IF INKEY(9)=0 THEN DX=DX*4:DY=DY*4
110 X=X+DX:Y=Y+DY
120 LOCATE X.Y
130 PRINT CHR$(231);
140 GOTO 30

General sprite control 43

Lines 60 to 90 set DX and DY to an appropriate increment
according to which of the cursor keys is pressed. A larger
increment is achieved by multiplying DX and DY by 4 if the COPY
key is pressed (line 100).

True positional control - the joystick
Although using the cursor keys in the way described in the
previous section is a way of directly updating a sprite's X and Y
co-ordinates it is not really true positional control. True positional
control involves setting the sprite's X and Y co-ordinates to some
specified position, not their repeated updating by adding an
increment. However this sort of positional control is only possible
with input devices that produce screen co-ordinates such as
proportional joysticks or lightpens. With a proportional joystick
or a light pen you can effectively point at a position on the screen
and this supplies your program with a pair of co-ordinates where
you would like the sprite to be positioned - thus updating the
form of setting the sprite's X and Y variables to the co-ordinates
supplied by the input device. True positional control allows the
user to move a sprite from one place on the screen to another
without having to move through any intermediate positions.

True positional control is often very useful, even though it
brings certain problems of its own, but it is not available on a
standard Amstrad. The main reason for this is that the Amstrad
joysticks are not proportional joysticks but simply an extension of
the main keyboard. That is they do not supply X and Y co
ordinates to the machine only an indication of UP, DOWN, LEFT,
RIGHT and FIRE. In this sense, for sprite control, the joysticks are
entirely equivalent to the cursor keys. For example, to change the
first positioning program given in the previous section to use
joystick zero simply change the INKEY parameters in lines 50, 60,
70 and 80 to

50 IF INKEY(73) = 0 THEN Y=Y-1
60 IF INKEY(72) = 0 THEN Y=Y + 1
70 IF INKEY(75) = 0 THEN X=X+1
80 IF INKEY(7U) = 0 THEN X=X-1

Velocity control
Velocity control is not used very much with joysticks because
positional control seems to suit the situation much better. How
ever, velocity control has a lot to offer if the only input device is a
keyboard. Although this form of control is correctly known as
velocity control, from the user's point of view it often seems more
like directional control. The fundamental idea is that each time

44 Animation in text mode using sprites

through the animation loop the keyboard is inspected and de
pending on which key, if any, is pressed the sprite's velocity is
updated. In most cases a change in velocity brings about a change
in the direction of motion rather than in the speed of the sprite -
although a change in speed is sometimes useful. As an example of
velocity control, consider the animation of a 'bat', first using
positional control

10 MODE i
20 X = 20
30 Y = 20
110 IF INKEY(8)=0 THEN X=X-1
50 IF INKEY(1)=0 THEN X=X+1
60 LOCATE X,Y
70 PRINT SPC(1) ; STRING$(3. 1**3) ; SPC(1) ;
80 GOTO U0

This program moves the bat one position per keypress and as
such is a little slow and tedious. (If you are wondering why there
is no PRINT statement to erase the bat from the screen it is
because the two spaces one at each end of the bat do the job
automatically - i.e. the sprite is 'self blanking'. Self blanking is
duscussed more fully in the next chapter.) Now try the velocity
control approach

10 MODE 1
20 X=20
30 Y = 20
*10 VX=1
50 x=x+vx
60 IF X<1 THEN X=1
70 IF X>35 THEN X=35
80 IF INKEY(8)=0 THEN VX=-1
90 IF INKEY(1)=0 THEN VX=1
100 LOCATE X.Y
110 PRINT SPC(1) ; STRINGS (3. 1*13) ; SPC(1) ;
120 GOTO 50

You will discover that the bat drifts either right or left, depending
on which of the left or right cursor keys you press. Notice that the
position of the bat is updated automatically each time through the
animation loop even is no key is pressed and that it is the velocity
VX which is changed in response to a keypress. This example is
typical of velocity control in that things keep on moving even if
you don't do anything. However, this simple one-dimensional
(side to side) movement and control is not the only way that
velocity control can be used. For example, as well as the obvious
generalisation to two dimensions using four keys to control the

General sprite control 45

up/down, left/right velocity of a sprite, you can introduce a single
or double key control that 'turns' the sprite. For example

10 mode 1
20 DATA 0,-1,1,0,0,1,-1.0
30 DIM V(4),W(4)
¿10 FOR K=1 TO U
50 READ V(K),W(K)
60 NEXT K
70 X = 20
80 Y=12
90 K = 1
100 LOCATE X.Y
110 PRINT SPC(l);
120 X-X+V(K)
130 Y-Y+W(K)
1U0 IF X = 1 OR X = Z10 THEN K=K+2
150 IF Y=1 OR Y=25 THEN K=K+2
160 IF INKEY(9)=0 THEN K=K+1
170 IF K>4 THEN K=K-4
180 LOCATE X.Y
190 PRINT
200 FOR J=1 TO 50:NEXT J
210 GOTO 100

This program uses two arrays V and W to hold pairs of x and y
velocities as shown in fig 2.2. The direction in which the asterisk
is travelling is determined by the current value of K. Each time the
copy key is pressed the value of K is incremented by 1 and a new
pair of velocities is selected. This action makes the sprite turn
through 90 degrees with each press of the space bar. By adding
four more elements to the arrays you can make a sprite turn
through 45 degrees. This type of control is particularly effective if
the shape of the sprite is changed so as to point in the direction of
motion. The method of doing this exactly the same as described
for internal animation only instead of using the animation counter
as an index to select the shape, the direction index (K in the above
example) is used. To see this add the following lines to the above
program

35 dim S(U)
65 S(1)=2U0:S(2)=2U3:S(3)=2U1:S(U)=242
190 PRINT CHR$(S(K));

Acceleration control
Acceleration control is not quite as common as the previous two

46 Animation in text mode using sprites

-1,0

0,-1

v,w
► 1,0

y INCREASING

0,1

x INCREASING

Fig 2.2 The directions of movement produced by the values of v and w

methods but it does have one very important use. In games based
on simulations of landing or flying spaceships, firing a rocket
produces a change in the velocity of the sprite by applying a
constant acceleration as long as a key is pressed. This sort of
control is most simply implemented by directly updating the
sprite's acceleration variables each time through the animation
loop. For example, if a sprite is falling down the screen because of
a constant vertical acceleration simulating gravity then a 'landing'
game can easily be produced

10 MODE 1
20 X=20
30 Y=1
110 VY=0
50 AY=0.001
60 LOCATE X,Y
70 PRINT SPC(l)
80 Y=Y+VY
90 VY=VY+AY
100 IF INKEY(9)=0 THEN AY=-0.001 ELSE AY=0.001
110 LOCATE X,Y
120 PRINT CHR$(239);
130 FOR J=1 TO 20:NEXT J
140 GOTO 60

General sprite control 47

The 'rocket' engine can be 'fired' by pressing the COPY key and
this will change the acceleration from -001 to —-001, so slowing
the descent. All that is necessary to change this into a full 'lander'
game is the addition of a fuel count and a sprite event detector for
'touch down'.

A free fall game

The following game shows most of the ideas introduced in this
chapter working together. The program uses the falling man
sprite given earlier, with the addition of an aeroplane and a
parachute to create a simple 'free fall' game. At the start an
aeroplane flies across the top of the screen and a target appears at
the bottom. By pressing the down arrow key the man can be
made to jump from the plane and free fall, hopefully toward the
target. There is a constant wind blowing so this is not as easy as it
sounds! By pressing the COPY key a parachute can be made to
open and from this point on the man can be steered to the right or
left using the cursor keys.

The structure of the program is fairly straightforward and you
should be able to make sense of it with the aid of the subroutine
table given below.

Subroutine action

1000 set up colours and target position
2000 define shapes and set up shape strings
2500 initialise sprite variables for plane
2700 initialise sprite variables for falling man
2900 initialise sprite variables for parachute
3000 update sprite variables
4000 print sprite as falling man
5000 print sprite as plane
6000 test left and right cursor keys and set velocity
7000 print sprite as parachuting man
8000 end game routine
9000 pause
9500 clear keyboard buffer

The only subroutine whose purpose isn't clear is 9500. The
Amstrad has a keyboard buffer that is capable of storing a number
of keypresses. To avoid these being accepted as the answer to the

48 Animation in text mode using sprites

*

Fig 2.3 The free fall game

'ANOTHER GAME?' question subroutine 9500 will read key
presses until there aren't any left! Amstrad 664 users can use the
CLEAR INPUT command to produce the same result.

The main program is composed of four WHILE loops. The
outer loop, lines 40 to 290, simply keeps the game going as long as
you answer 'yes' to the 'ANOTHER GAME?' question. The three
inner loops correspond to the three stages of the game - lines 70
to 110 fly the plane before the down arrow key is pressed, lines

A free fall game 49

140 to 190 make the man fall until the COPY key is pressed and
lines 220 to 270 make the man drift down under a parachute. The
subroutines that are called before each of the WHILE loops
initialise variables and generally get things ready for the next
stage of the game. To make things easier, and to demonstrate the
range of movement that can be created by making small changes,
only one sprite is used. Its position, velocity and acceleration are
given by X,Y,XV,YV,XA and YA respectively. Notice that it is
only these quantities, and the shape of the sprite that are
manipulated to produce the moving plane, the falling man and
the parachuting man.

10 REM free fall game
20 MODE 1
30 GOSUB 2000
40 WHILE A$="Y"
50 GOSUB 1000
60 GOSUB 2500
70 WHILE INKEY(2)—1
80 GOSUB 3000
90 GOSUB 5000
100 GOSUB 9000
110 WEND
120 GOSUB 2700
130 GOSUB 9500
140 WHILE Y<20 AND INKEY(9)=-1
150 TX-TX+1
160 GOSUB 9000
170 GOSUB 3000
180 GOSUB 4000
190 WEND
200 GOSUB 2900
210 GOSUB 9500
220 WHILE Y<=23
230 GOSUB 6000
240 GOSUB 3000
250 GOSUB 7000
260 GOSUB 9000
270 WEND
280 GOSUB 8000
290 WEND
999 END
1000 REM set up
1010 INK 0,0
1020 INK 1,26
1030 PEN 0
1040 PAPER 1

50 Animation in text mode using sprites

1050
1060
1080
1090
1999

2000
2010
2020
2030
2040
2050
2060
2070
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2499

2500
2510
2520
2530
2540
2550
2560
2570
2580
2599

2700
2710
2720
2730
27/10
2799

2900
2910
2920
2999

CLS
XL=10+RND*10
LOCATE XL,25
PRINT CHR$(238)
RETURN

REM init
SYMBOL 240,8.18,&DB,&7E,&18,&3C,8.66,8.42, &U2
SYMBOL 241,8.33. 8.1F, 8.E, &7E, 8.CB, 8.89,8.18, 8.30
SYMBOL 2/12, &3. 8.E6,8.34, &1F, 8.1F, 8.34, &E6, &3
SYMBOL 2/13,8.30,8.18,8.89,8.CB, &7E, 8.E, 8.1F, 8.33
SYMBOL 244,8.42,8.42,8.66,8.3C, 8.18,8.7E, &DB, 8.99
SYMBOL 2/15,8.C, 8.18,8.91,8.D3, &7E, 8.70,8.F8, 8.CC
SYMBOL 246,8.C0,8.67.8.2C, 8.F8,8.F8, &2C, 8.67,8.C0
SYMBOL 2/17,8.CC, 8.F8, &70,8.7E, 8.D3,8.90,8.18,8.C
DIM S$(8)
FOR I%=1 TO 8
S$(IX)=CHR$(239+1%)
NEXT 1%
SYMBOL 248, &3C, 8<7E, 8.FF, 8.FF, 8.FF, 8.99 , &A5,8.42
SYMBOL 249,8.5A, &5A, 8.3C, 8.18,8.24,8.42,8.42, &0
SYMBOL 250,8.80,8.C1,8.E3, 8.FF, 8.FF, 8.E, &1C, &38
SYMBOL 251,8.C0, &C0,8.80, &F0, &F8,8.0, &0,8.0
P$=CHR$(250)+CHR$(251)
A$="Y"
RETURN

REM plane init
X=1
Y = 1
XV = 1
Y V = 0
XA=0
Y A = 0
XP=39
Y P = 1
RETURN

REM drop init
XV=0
YV=0.5
XA=RND*0.2-0.1
YA=0.1
RETURN

REM para init
YV=0.15
XA=XA*3
RETURN

A free fall game 51

3000
3010
3020
3030
30110
3050
3060
30703080
3090
3999

REM update
XP=Xs YP=Y
X=X+XV
Y=Y+YV
IF X>38 THEN X=1
IF XP>38 THEN XP=1
IF X<1 THEN X=38
IF XP<1 THEN XP=38
XV=XV+XA
YV=YV+YA
RETURN

U000
U010
11020
11030
110110
11999

REM reprint
R-TX MOD 8+1
CALL &BD19
LOCATE XP,YP SPRINT ’’ ";
LOCATE X,YSPRINT S$(R);
RETURN

5000
5010
5020
503050110
5999

REM print plane
LOCATE XP.YP
PRINT "
LOCATE X,Y
PRINT P$
RETURN

6000
6010
6020
6999

REM inkey
IF INKEY(8)=0 THEN XV=-ABS(XV)
IF INKEY(l)-0 THEN XV=ABS(XV)
RETURN

7000
7010
7020
7030
70U0
7050
7060
7070
7080
7999

REM print para
LOCATE XP.YP
PRINT ’’
LOCATE XP.YP+l
PRINT "
LOCATE X.Y
PRINT CHR$(2U8);
LOCATE X,Y+1
PRINT CHR$(2U9):
RETURN

8000
8010
8020
8030
80110
8050
8060
8070

REM end game
GOSUB 9500
CLS
IF ABS(X-XL)>3 THEN GOTO 8500
PRINT "WELL DONE"
IF ABS(X-XL)>1 THEN GOTO 8600
PRINT "BRILLIANT, IN FACT"
GOTO 8600

52 Animation in text mode using sprites

8500 PRINT "STAY ON THE GROUND"
8510 PRINT "IT'S SAFER"
8600 INPUT "ANOTHER GAME, Y/N";A$
8610 A$=UPPER$(A$)
8999 RETURN
9000 REM pause
9010 FOR W% = 1 TO 250
9020 NEXT W%
9099 RETURN
9500 REM clear inkey
9510 WHILE INKEYtO""
9520 WEND
9530 RETURN

To make the game more exciting and to check that you under
stand all of the ramifications of the sprite method you might like
to add an erratic wind that blows the man off target all the time he
is parachuting. There is also scope for the addition of some good
sound effects for the aeroplane, missing the target and for the
wind.

Conclusion

The sprite is the fundamental idea that lies behind all animation.
However, as will be described in the next chapter, it is necessary
to use all sorts of 'tricks' to create effective animation. This should
not be taken to mean that the sprite is in fact useless. A program
constructed using sprite ideas and a few special methods is still
easier to write and understand than one that uses nothing but
special methods - animation without sprites is like trying to do
arithmetic without numbers!

Advanced animation 3

If computers were infinitely fast there would never be any need to
consider any other form of animation than sprites. As it is,
computers are rather slower than we would like and there is no
choice but to examine some of the tricks that can be used to speed
up the process of animation. Before going on to look at these
tricks, it is worth looking at some of the more advanced features
of the sprite idea.

High resolution sprites - TAG

All of the sprite examples in the previous chapter have used
character graphics to make sure that everything moved reason
ably fast. Using character graphics the smallest movement that a
sprite can make is a single character location and while this results
in fast movement it isn't very smooth. There is no reason
however why a sprite cannot be animated using the high res
olution co-ordinate system to record its position. As already
described in Chapter One, following the TAG command, charac
ters are printed with their top left hand corner at the current
location of the graphics cursor. This allows the creation of sprites
that move by a single graphics increment, and hence smooth, if
not fast, motion. If you would like to see high resolution sprites in
action then change the first version of the bouncing balls program
given in Chapter Two as follows 53

54 Advanced animation

1050 X(IX)-INT(RND*631)
1060 Y(IX)-INT(RND*191)+8
1090 XV(IX)-SGN(RND-0.5)*2
1100 YV(IX)=SGN(RND-0.5) *4
2080 IF X(IX)<=0 THEN X(IX)=0:XA(IX)=-2*XV(IX)
2090 IF X(IX)>-623 THEN X(IX)“623:XA(IX)=-2*XV(IX)
2100 IF Y(IX)<=15 THEN Y(IX)=15:YA(IX)—2*YV(I%)
2110 IF Y(IX)>=399 THEN Y(IX)=399:YA(IX)=-2*YV(IX)
3010 MOVE PX(IX),PY(IX)
3020 TAG:PRINT SPC(1);:TAGOFF
3030 MOVE X(IX),Y(IX)
3040 TAG:PRINT S$(IX);:TAGOFF

The only really difficult part of the change is working out what co
ordinate values correspond to a sprite touching one of the
boundaries. For example you might think that the position X,0
corresponds to a sprite on the lower edge of the screen but
because this is the location of the top left hand corner of the
character it actually corresponds to a position almost on the other
side of the boundary! The y co-ordinate that corresponds to
printing a character so that it is just completely on the screen is of
course 15, the character height in terms of the high resolution co
ordinates. Using similar arguments, you should be able to work
out the values used in line 2080 to 2110 to detect a collision. The
only other point worth noticing is the way TAG and TAGOFF are
used around the PRINT statements in lines 3020 and 3040 to alter
the way text is printed to the screen. You could set TAG at the
start of a program and leave it set all the way through but it is
better to set and reset it as and when you need it. The reason for
this is that it is better to have the machine in its usual state of
separate text and graphics cursors while a program is running so
that messages can be printed and control codes used.

This is all there is to high resolution animation, but there is the
added bonus of being able to use the graphics ink modes - XOR,
AND and OR. How these might be used is discussed as part of
the following sections.

Multi-coloured sprites

For most applications the standard single colour sprite is quite
sufficient, but occasionally the need to have more than a single
colour does arise. As a character definition only involves a

Multi-coloured sprites 55

foreground and a background colour you might think that the
requirement of more than one foreground colour rules out the use
of characters to define a sprite shape. In fact it is very easy to
combine characters to give any number of foreground colours and
a single background colour. The key is the use of the transparent
paper mode to overlay a range of foreground colours. For
example if you want to print a white face with green eyes and a
pink mouth you have to define three characters, a face, the eyes
and the mouth, and then print them in the correct order after
setting transparent paper mode and remembering to change the
foreground colours. That is

10 MODE 0
20 SYMBOL 240, &00, &00, &66, &00,&00,&00,&00,&00
30 SYMBOL 241,&00,&00,&00,&00,&42,&3C,&00,&00
40 INK 1,26
50 INK 2,18
60 INK 3,16
70 PRINT CHR$(22);CHR$(1);
80 LOCATE 10,10
90 PEN 1
100 PRINT CHR$(224);
110 LOCATE 10,10
120 PEN 2
130 PRINT CHR$(240);
140 LOCATE 10,10
150 PEN 3
160 PRINT CHR$(241);
170 END

If you have an Amstrad 664 then you can set transparent paper
without recourse to control codes by using an extra parameter
in the PEN statement. (PEN L,1 sets transparent paper mode and
PEN L,0 sets normal mode both using logical colour L.) However
there are advantages in using control codes because they can be
incorporated into a string and allow the multi-coloured sprite to
be printed using a single PRINT statement. For example, if you
make the following changes to the previous program

70 S$ = CHR$(22)+CHR$(1)
+CHR$(15)+CHR$(1)+CHR$(224)
+CHRS(15)+CHR$(2)+CHR$(8)+CHR$(240)
+CHR$(15)+CHRS(3)+CHRS(8)+CHR$(241)
+CHRS(22)+CHR$(0)

80 LOCATE 10,10
90 PRINT S$
100 END

56 Advanced animation

then the three-coloured face will be printed in a single operation
by line 90. The first two control codes in the string set transparent
paper, CHR$(15) sets the pen colour and CHR$(8) is a backspace
command that makes sure that all three characters are printed in
the same place. The final two control codes set the paper mode
back to normal.

The same technique of using more than one character can be
applied to high resolution sprites, that is following TAG, but you
cannot use the control codes. Instead you have to set the graphics
ink mode to OR and print each character at the same position by
using the MOVE command.

Backgrounds

So far, the least interesting routine in the sprite animation loop
has been the 'blank sprites' routine. All this does is to print or plot
a uniform block of background dots to remove a sprite from the
screen. However, this only works if the background against
which the sprite are moving is itself a uniform colour! In most
cases sprites do not move across a uniform background. For
example, in a space game the sprites would move against a
background of stars or even planets. If you simply blank sprites
by printing blanks then it is obvious that the background will
slowly be eroded as the sprites move around the screen. Com
mercial video games machines often get round this difficulty by
using printed transparent overlays that are stuck to the front of
the screen. However, this is not a method that is suitable for
home computer use.

You might think that the simplest solution to the problem is
somehow to save the area of the screen that the sprite is about to
be printed at and then the next time though the animation loop
the blanking subroutine could restore it. This is a possibility, but
it requires two special machine code subroutines, one to 'get' an
area of the screen and store it and another to 'put' the data back to
the screen. In text mode there is a command only available on the
664 that will read the character already on the screen at a given
location. The function COPYCHR$ returns a string containing the
character at the position of the text cursor - if the character isn't
recognised a null string is returned. This function can obviously
be used to discover what is on the screen before a sprite is printed
so that it can be used to blank the sprite out when it moves on.
However the COPYCHR$ function isn't fast and, even though it
is possible to add it to the 464's commands, a better method is to
keep a screen copy in an array. For example, if you are using a

Backgrounds 57

mode 1 screen all you have to do is dimension an integer array
DIM S% (40,25) and each time you PRINT a character to the screen
at X,Y store its ASCII code in S%(X,Y) - that is for each LOCATE
X,Y:PRINT CHR$(A); also do a S%(X,Y)=A. If these simple rules
are followed, the array is a true copy of what is on the screen and
can be examined at any time to find out what character a sprite is
about to obliterate.

These methods do work but it doesn't solve the additional
problem of what colour or pattern the sprite's own background
dots should be. As already mentioned a sprite's shape is deter
mined as a pattern of both foreground and background dots in a
square array of dots. If the sprite's dots simply replace the dots on
the screen then the patterned background will be destroyed even
in places where it should show through. The solution is to store
only the sprite's foreground dots in the screen area leaving the
existing background dots as they are. This corresponds to using
the transparent paper mode as described in the last section. In
general, preserving backgrounds during sprite printing and
blanking is not easy.

Blanking methods
Following the discussion of the problem of preserving back
grounds as sprites move across them it is worth looking at other
methods of blanking. The most direct method of removing a
character from the screen is to print a blank or space with the
paper colour set correctly. However you will find that this
method will fail if you have the transparent paper mode set and in
this case what you should do is to print a solid block CHR$(143)
using the correct pen colour.

In high resolution animation there is another way to blank a
character using the XOR ink mode. If you print or draw anything
on the screen while the XOR ink mode is set, then drawing it a
second time erases it from the screen. For example try

10 MODE 1
20 PRINT CHR»(23);CHR$(1);
30 MOVE 100,100
40 TAGsPRINT "A"TAGOFF
50 MOVE 100,100
60 TAGsPRINT "A”;sTAGOFF

Line 20 sets the XOR mode, line 40 prints the letter 'A' which
appears normally and then line 60 prints it in the same place a
second time which causes it to disappear. Thus, using XOR ink
mode, a character can be used to blank itself out with the
advantage that the screen is returned to its original state. This

58 Advanced animation

method of blanking does preserve the background that the sprite
moves over but it has the disadvantage that the sprite might not
appear in the colour that you intended. For example if you print a
sprite using logical colour 3 onto a background that has a logical
colour of 2 using the XOR mode then the sprite will appear in
logical colour 1 (3 XOR 2=1). This colour change is sometimes a
considerable disadvantage of the method but for some applic
ations it can actually help to make the sprite stand out against any
background.

Finally it is worth mentioning the idea of the 'self blanking'
sprite. If a sprite is going to move in only one or two known
directions then it can be made to automatically blank out its old
image by surrounding it with blanks. For example if a man-shape
is only going to move across the screen from left to right one
character location at a time it can be made self blanking by
including a single space character to its left

10 MODE 1
20 S$=” ”+CHR$(2U9)
30 FOR X=1 TO 39
U0 LOCATE X.10
50 PRINT S$;
60 NEXT X

If you would like to see another more complicated example of a
self blanking sprite then examine the example of velocity control
of a bat in the previous chapter.

Synchronisation
A TV picture is built up as a number of lines, each scanned in turn
starting from the top of the screen. If you change the character
printed at a particular location then what you see depends on
exactly when the change occurs. For example if the TV line scan
has just displayed the first four rows of pixels of the old character
before you print the new character then you will momentarily see
half of the old character and half of the new character - producing
a sort of flash. As all sprite movement is produced by repeated
printing of characters on the screen this flashing will occur very
frequently as the sprite moves across the screen.

The correct solution to this problem is not to change the creen
while the TV screen is being scanned but to wait until the
scanning spot is making its way back to the top of the screen
ready for the next scan - this is called the 'vertical retrace period'.
If you only print characters during the vertical retrace period
there will be no danger of fractional characters being displayed
and hence no flashing. There is a machine code routine at location

Backgrounds 59

&BD19 that will wait until the start of the next vertical retrace
period and the Amstrad 664 also has an additional command,
FRAME, that does the same thing. If you are writing in machine
code then you should always try to arrange to call &BD19 before
starting to print anything to the screen and this should ensure
flash free animation. However in BASIC the time it takes to
execute a single command can be longer than the entire vertical
retrace period and here the use of the CALL &BD19 or FRAME
commands is less obvious. For example, you might be surprised
by the results of the following program
10 MODE 1
20 X-20
30 Y-l
U0 LOCATE X.Y
50 CALL &HBD19
60 PRINT "
70 IF INKEY(0)«0 THEN Y-Y-l
80 IF INKEY(2)=0 THEN Y-Y+l
90 LOCATE X.Y
100 CALL &HBD19
110 PRINT CHR$(1U3):
120 GOTO A0

This program is a simple animation loop that allows you to move
a solid block up and down the screen. The only new feature is the
use of CALL &BD19 (Amstrad 664 users can substitute a FRAME
command) to synchronise the PRINT statements with the vertical
retrace period. All that this should do is ensure that the animation
is flicker-free but what actually happens is that for some vertical
positions near the top of the screen the solid block changes its
shape. The reason for this is simply that the PRINT statement
takes longer to execute than the vertical retrace period. This
means that the character is printed to the screen during the visible
part of the scan. This, of course, can result in part of the old
character being displayed along with part of the new character,
but now rather than flashing randomly you get a stable image
because the character is changed at the same point in the scan
each time through the animation loop.

The moral of this story is that in BASIC the value of synchronis
ation is something that has not to be judged by trying it in each
case.

Animating large objects

Animating large objects is not as common a requirement as you
might imagine. This is fortunate, because in general it isn't easy!

60 Advanced animation

The fact that sprites are small enough to make it possible t(
'quote' their dot patterns makes it easy to build a simple theory
and method of using them. Large objects generally take too lonj
to draw to make it possible to use draw, blank and redrav
animation loops in anything other than machine code. Even then
it is often difficult to make things happen fast enough. The bes
general method available is to make use of the observation that a!
a large object moves the dots that make it fall into three groups

1 those that remain unaltered
2 those that change to background dots, and
3 those that change to foreground dots

For most large objects, the set of dots that are unaltered at eacl
move accounts for most of the dots. This means that such ar
object can be animated by changing only the set of points tha
should become background dots and the set of dots that shoulc
become foreground dots. For example, consider the problem o
animating a large square block so that it moves horizontally acros:
the screen. As the block moves the trailing column of dots i:
changed to background dots and the leading column of dots i:
changed to foreground dots. The following program will animat*
quite a large block

10 MODE 2
20 X=0
30 GOSUB 1000
40 X-X+l
50 GOTO 30
1000 MOVE X,300
1010 DRAW X.200,0
1020 MOVE X+100,300
1030 DRAW X+100,200,1
1040 RETURN

Subroutine 1000 will draw a line in background dots betweer
X,300 and X,200 and then a line in foreground dots betweer
X+100,300 and X+100,200. At first all you will see is a moving
line but as soon as the line of background dots reaches the firs
line of foreground dots a moving square suddenly materialises!

This method of changing only the dots that need to be changer
sounds easy until you try it on a few apparently simple examples
Finding out the sets of dots that change when a disk moves in i
horizontal line is bad enough but if it moves along a curved patl
as in a simulation of a rising sun then things are really tricky!

Snake animation 61

Snake animation

There is one large object that can be easily animated using
character graphics - the snake. If you look at a snake wiggling its
way around the screen it looks as if all of the characters in its body
move each time the snake moves. If this was the case animating a
snake of any size would very quickly become a problem for
assembly language. However, if all the characters that make up
the snake are the same, only two characters - the head and the tail
- actually need to move to give the impression that the whole
snake is moving. The reason for this is not difficult to see. The
head has to move because it is moving into a character location
that was previously blank. On the other hand the second charac
ter in the snake has to move into the character location that the
head occupied but if they are the same character there is actually
no need to alter anything as long as we remember not to blank out
the head at its old position. Applying this rule to each character
down the snake it is obvious that nothing has to change until we
reach the tail. In this case the argument about not having to move
the tail into the position occupied by the last but one character
holds, but in addition the old position of the tail has to be blanked
out. What is surprising is that by printing only two characters, a
head and a blank to erase the old tail position, an entire snake of
any length will appear to move across the screen.

One common elaboration of this method is for the character
that forms the head of the snake to be different from the rest of
the body but even this amendment causes very little in the way of
extra work. If the head is different from the rest of the body then
its old position has to be changed to a character that forms the
main body of the snake. So even a 'good looking' snake with a
clear head needs only three characters to be printed to make it
move, no matter how long it is.

Although the animation of a snake only requires the printing of
a small number of characters each time through the animation
loop there is still a problem in keeping track of the positions of all
the characters in the snake. As moving the snake only involves
the head and the tail you might be puzzled as to why you need to
keep track of the positions of ALL of the characters in the snake.
The reason for this is the need to know where the tail will be
printed at each move. Each time the snake moves the tail moves
to the position that was occupied by the last but one character and
so it is clearly necessary always to know the position of the last
but one character. But this argument can be repeated because
each time the snake moves the second from last character be
comes the last but one character in the snake! In other words, if all

62 Advanced animation

the co-ordinates of character I in the snake are stored in X(I) and
Y(I) then at each move co-ordinates are up dated as follows

XT=X(1)
YT=Y(1)

FOR I=N TO 2 STEP -1
X(I-1)=X(I)
Y(I—1)=Y(I)

NEXT I
and

X(N)=XH
Y(N)=YH

where the snake is N characters long. The co-ordinates of the
head are stored in X(N) and Y(N), XT and YT are the co-ordinates
of the old position of the tail and XH and YH are the new co
ordinates of the head. If you examine this FOR loop you should
be able to see that it moves all the co-ordinates down the array by
one place - the co-ordinates of the first character in the snake
become the co-ordinates of the second character and so on. After
all the co-ordinates have been shifted, the animation of the snake
is achieved simply by printing the head at its new position then
changing the character at the head's old position to a snake 'body'
character, and finally blanking out the old tail. The only trouble
with the above method is that each time the snake moves the
contents of the pair of arrays X(I) and Y(I) have to be shifted
down. This is quite a lot of work for a BASIC program to do each
time through the animation loop and, worse, the amount of work
increases with the length of the snake. Using this method in
BASIC a snake would move slowly and would grind (or slither?)
to a virtual standstill as it grew in length. The solution to this
difficulty is to be found in the use of an advanced 'data structure'
known as a 'queue'. The idea is to avoid moving the data in the X
and Y arrays by using a pair of pointers, one to the co-ordinates ol
the head and one to the co-ordinates of the tail. For example, il
the co-ordinates of each character are once again stored in the
arrays X and Y with Q being the index of the array elements that
hold the co-ordinates of the head and Z being the index of the
array elements that hold the co-ordinates of the tail, then the
updating procedure becomes

Q=Q+1
X(Q)=XH
Y(Q)=YH

Z=Z+1

Snake animation 63

In other words, the new position of the head of the snake is
stored one element further up the array than its old position. In
this way, each time the head moves it leaves behind it a trail of the
co-ordinates of its old positions. So, for example, if the head is
currently at X(Q),Y(Q) then its previous position was X(Q—1),
Y(Q—1), and before that it was at X(Q—2),Y(Q—2) and so on. This
trail of co-ordinates can be used to make the tail follow the head
around the screen simply by moving it from X(Z),Y(Z) to X(Z+
1),Y(Z+1) each time through the animation loop. Technically the
trail of co-ordinates and the variables Q and Z are referred to as a
'queue'. The term 'queue' seems appropriate if you think of the
co-ordinates of the head as joining the end of a queue of co
ordinates and the co-ordinates of the new position of the tail
forming the front of the queue. As the snake moves forward co
ordinates move down the queue to eventually become the current
position of the tail as shown in this diagram

.............. 1 1 1 1 1 1
old tail

1 1 1
unused

positions | array elements
current current
tail head
position position
X(Z),Y(Z) X(Q),Z(Q)

This method of storing the co-ordinates of the head has one big
problem - as the snake moves around the screen more and more
array space is used up. However, at any one time only the
elements between X(Z),Y(Z) and X(Q),Y(Q) are needed. The rest
of the two arrays are either unused or hold old, now unwanted,
tail positions. The solution is simply to make the array big enough
to hold all of the co-ordinates of the longest snake that you are
going to animate and, if either of the pointers Z or Q reaches the
limit of the arrays, then reset them to 1. The best way to imagine
the way that this works is to think of the arrays as being circular
with their last element next to their first. In this sense the head
and tail pointers Q and Z move round in a circle with all the
co-ordinates of interest stored between them. With this small
addition we now have all the ideas necessary to implement any
number of games on animated snakes.

The game given in the listing below is perhaps the simplest of
snake games but it still has the essential fascination involved in
driving a snake around the screen. The game starts with a snake -
actually a caterpillar in this case - surrounded by a mass of
randomly placed flowers. The object of the game is to control the
caterpillar (using the four cursor keys) so that it avoids all of the

64 Advanced animation

Fig 3.1 The caterpillar game

poisonous blue flowers and its own tail, but eats as many of the
red flowers as possible. This starts off being quite easy but the
catch is that the snake increases in length by one character for
each red flower that it eats!

10 REM caterpillar
20 MODE 1
30 GOSUB 1000
35 GOSUB 1200
¿10 GOSUB 1500
90 WHILE LEFT$(A$,1)=”Y"
100 GOSUB 1200
110 GOSUB 2000
120 WHILE FOODX>0 AND DEADX=0
130 GOSUB 3000
140 GOSUB 4000
150 WEND
180 GOSUB 9900
190 WEND
200 GOSUB 9600
210 GOSUB 9500
999 END
1000 REM inlt
1010 SYMBOL 240,&AA,&FE,&7C,&38,&10,&92.&54,&38

Snake animation 65

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1199
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1490
1499
1500
1510
1520
1530
1540
1550
1999
2000
2005
2010
2020
2030
2040
2080
2090
2100
2110
2150
2160
2170
2180

SYMBOL 241,&3,&73,&FC,&F8,&F8,&FC,&73,&3
SYMBOL 242,&C0,&CE,&3F,&1F,&1F,&3F,&CE,&C0
SYMBOL 243,&C3.&C3,&24,&3C,&7E,&7E,&7E,&3C
SYMBOL 244, &3C, &7E, &7E, &7E, &3C, &24, &C3, &C3
SYMBOL 245, &3C, &7E, &FF, 8.FF, &FF, &FF, &7E, &3C
DIM H$(4)
FOR I%-=1 TO 4
H$(I%)=CHR$(240+1%)
NEXT 1%
FOOD%=10+RND*5
DEAD%=0
DIM X%(30),Y%(30)
A$="Y"
MX%=30
RETURN
REM re_lnit
Q%=5
Z%=1
FOR I% = 1 TO 5
X%(!%)=!%:Y%(I%)=10
NEXT 1%
XH%=5:YH%=10
A%-5:B%-10
XV%=1:YV%-0
H% = 1
RANDOMIZE TIME
RETURN
BORDER 26
INK 0,26
INK 1,3
INK 2,11
INK 3,2
CLS
RETURN
REM plant flowers
CLS
PEN 1
FOR !%■=! TO FOOD%
GOSUB 2500
NEXT 1%
PEN 2
FOR I%=1 TO 5+RND*5
GOSUB 2500
NEXT 1%
PEN 3
LOCATE X%(1),Y%(1)
FOR I%=1 TO 4
PRINT CHR$(245);

66 Advanced animation

2190 NEXT 1%
2200 PRINT CHR$(211);
22199 RETURN
2500 REM flower pos
2510 X=RND*39+1
2520 Y=RND*21+1
2530 UX=X:VX=Y
25210 GOSUB 9000
2550 IF CLXO0 THEN GOTO 2510
2560 LOCATE X,Y
2570 PRINT CHR$(210);
2999 RETURN
3000 REM inkey
3010 IF INKEY(0)=0 THEN YVX—1:XVX=0:HX=3
3020 IF INKEY(2)=0 THEN YVX = 1: XVX = 0: HX = 1
3030 IF INKEY(8)=0 THEN XVX=-1:YVX=0:HX = 2
30210 IF INKEY(l)-0 THEN XVX = 1: YVX = 0: HX = 1
3050 GOSUB 9600
3999 RETURN
21000 REM print cat
21005 FOR WX-1 TO 100: NEXT WX
1010 AX-XHX:BX-YHX
1020 XHX=XHX+XVX: YHX=YHX+YVX
21030 IF XHX>10 THEN XHX = 1
1010 IF XHX<1 THEN XHX=10
21050 IF YHX>25 THEN YHX = 1
21060 IF YHX<1 THEN YHX=25
21070 UX=XHX: VX=YHX
1080 GOSUB 9000
21090 IF CLXO0 THEN GOSUB 21500
21100 LOCATE AX.BX
21110 PRINT CHR$(215)1
21120 LOCATE XHX.YHX
21130 PRINT H$(HX);
211210 QX=QX + 1
21150 IF QX>MXX THEN QX = 1
21160 XX(QX)=XHX: YX(QX)=YHX
21170 LOCATE XX(ZX) , YX(ZX)
21180 PRINT "
21190 ZX=ZX+1
1200 IF ZX>MXX THEN ZX = 1
21199 RETURN
1500 REM hit
1510 IF CLXO1 THEN GOTO 1600
1520 PRINT CHR$(7)
1530 FOODX=FOODX-1
1510 ZX=ZX-1

Snake animation 67

4550
4590
¿1600
4610
4999

IF ZX<1 THEN ZX=MXX
GOTO 4999
SOUND 1,2000,50.15
DEADX=1

RETURN
9000
9010
9020
9030
9099

REM point
HUX=(UX-1)*16+8
HVX=400-16*(VX-1)-8
CLX=TEST(HUX,HVX)
RETURN

9500
9510
9520
9530
9540
9550
9560
9599

REM reset
INK 0,0
INK 1,26
BORDER 0
PEN 1
PAPER 0
CLS
RETURN

9600
9610
9620
9699

REM clear inkey
WHILE INKEYSo""
WEND
RETURN

9900
9905
9910
9920
9930
9940
9950
9960
9970
9980
9999

REM end game
CLS
IF DEADX=1 THEN GOTO 9940
PRINT "WELL DONE"

GOTO 9950
PRINT "BAD LUCK"

INPUT "ANOTHER GAME Y/N";A$
A$=UPPERS(AS)
FOODX=10+RND*5
DEADX=0
RETURN

You should be able to recognise all of the elements of snake
animation in the above program with the help of the following
subroutine table

Subroutine action

1000 initialise user-defined characters and dimension
arrays

1200
1500
2000

initialise caterpillar variables
set colours
print flowers and first caterpillar

68 Advanced animation

2500
3000
4000
4500
9000
9500
9600
9900

print a single flower
examine cursor keys
update caterpillar's position
caterpillar has hit something
test screen colour
reset paper and pen at end of game
clear keyboard buffer
end game

The only subroutine worth comment is 9000 which uses the TEST
function and a conversion from text co-ordinates to high res
olution co-ordinates to discover the colour of the middle of the
character location that the caterpillar head is about to move into.

Colour mapping

The way that physical colours can be assigned to logical colours
can be used to produce very fast and very smooth animation
without recourse to the print/reprint cycle of blanking animation.
If a number of areas are created using different logical colours and
all but one of them is made invisible by assigning the background
physical colour to them then, by changing which of the areas is
assigned to the foreground physical colour, the illusion of move
ment can be created. This method of producing apparent move
ment is known as 'colour mapping'. As an example, the following
program creates the appearance of two objects moving backwards
and forwards across the screen

10
20
30
¿10
50

MODE 0
GOSUB 1000
GOSUB 2000
GOSUB 3000
GOTO ¿10

1000
1010
1020
1030
10/10
1050
1060
1070

FOR X-l TO 15
PEN X
LOCATE X,16
PRINT CHR$(1/13);
LOCATE 16-X.20
PRINT CHR$(l/t3);

NEXT X
RETURN

2000
2010

FOR L=1 TO 15
INK L,0

Colour mapping 69

2020
2030

NEXT L
RETURN

3000
3010
3020
3030
30U0
3050
3060

FOR L=1 TO 15
INK L-l,0
INK L,26
FOR J=1 TO 10:NEXT J

NEXT L
INK 15.0
RETURN

Subroutine 1000 prints two rows of 'blocks' in such a way that
each block in the row has a different colour. In fact, the logical
colour increases as you move from left to right in the first row and
decreases in the second row. Subroutine 2000 assigns all of the
logical colours to physical colour zero thus hiding all of the
blocks. Following this, subroutine 3000 repeatedly assigns each of
the logical colours in turn to the physical colour white. In this way
the block that is visible moves across the screen. As the assign
ment of physical to logical colours doesn't take very many
memory accesses colour mapped animation can be very fast
indeed.

As a second example the following program draws a sequence
of circles in logical colours 1 to 15 and then animates them by
assigning all but one to the background colour

10 MODE 0
20 AX-320
30 BX-199
¿10 CX-1
50 FOR RX-10 TO 200 STEP 20
60 CX-CX+1 MOD 16
70 GOSUB 1000
80 NEXT RX
90 GOSUB 2000
100 GOSUB 3000
110 GOTO 100
1000 INC-2/RX
1010 IC-COS(INC)
1020 IS=SIN(INC)
1030 X=RX:Y=0
10U0 PLOT AX-X,BX+Y,CX
1050 PLOT AX+X.BX+Y
1060 FOR T-0 TO PI/2 STEP INC
1070 Z-X
1080 X-X*IC-Y*IS
1090 Y=Z*IS+Y*IC .

70 Advanced animation

1100 PLOT AX+X,BX + Y
1110 PLOT AX-X.BX+Y
1120 PLOT AX+X,BX-Y
1130 PLOT AX-X.BX-Y
1140 NEXT T
1150 RETURN
2000 FOR LX=1 TO 15
2010 INK LX, 0
2020 NEXT LX
2030 RETURN
3000 FOR LX=1 TO 15
3010 INK LX-1.0
3020 INK LX,26
3030 FOR J=1 TO 50:NEXT J
3040 NEXT LX
3050 INK 15,0
3060 RETURN

Flash animation

Many programmers only think of using the flashing colours to
draw attention to a particular area of the screen or for implement
ing an explosion, but they can be used as another method of
animation based on colour - flash animation. The basic idea of
using the flashing colours to produce the illusion of movement is
to arrange the screen so that adjacent areas flash in the reverse
order. That is, if a character location is flashing black then white,
its next door neighbour would be flashing white and then black.
In this way the flashing looks like something moving between the
adjacent character locations. Perhaps the best way to understand
this idea is by a simple example. The following program draws a
series of 'blocks', each consisting of two character locations, to
form a frame around the screen which is then animated using
flashing colours. The blocks are written bright red and bright
white respectively.

10 MODE 1
20
30
40

GOSUB 1000
GOSUB 2000
END

1000
1010

REM PRINT FRAME
FOR X=1 TO 40 STEP 4

Flash animation 71

1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

LOCATE X,1
PEN 1
PRINT STRINGS(2,143);
PEN 2
PRINT STRINGSC2,143) ;
LOCATE X, 24
PEN 1
PRINT STRINGS(2,143)5
PEN 2
PRINT STRING$(2,143)S

NEXT X
FOR Y=2 TO 23
PEN Y2 MOD 2 +1
LOCATE 1,Y
PRINT CHR$(143);
LOCATE 40,Y
PEN (Y2+1) MOD 2 +1
PRINT CHR$(143):

NEXT Y
RETURN

2000
2010
2020
2030

INK 1,6,26
INK 2,26,6
SPEED INK 8,8
RETURN

Notice the use of SPEED INK to adjust the speed of flashing so
that the illusion of motion is enhanced. Try different values in
this statement, line 2020, to see the effects produced. Also notice
that flashing animation has the strange property that it continues
even when the program isn't running!

Scrolling animation
The final 'novel' method of animation is based upon the simple
observation that the Amstrad, in common with many other
computers, can move a great many pixels very quickly by means
of a 'text scroll'. Obviously using simple scrolling you are limited
to moving objects up the screen but by using text window feature
it is possible to create a number of independent moving streams.
For example'the following program animates a central strip of the
screen by first defining a narrow text window and then printing
light and dark blocks on the bottom line, so forcing the window to
scroll

10 MODE 1
20 GOSUB 1000
30 GOSUB 2000
40 GOTO 30

72 Advanced animation

1000
1010
1020
1030
10/10
1050
1060

FOR 1=1 TO 10
LOCATE INT(RND*39)+1,INT(RND*2/l)+1
PRINT CHR$(2tt9);

NEXT I
WINDOW #1,15.19,1,25
C = 0
RETURN

2000
2010
2020
2030
20/10

IF C=1 THEN C = 0 ELSE C=1
PEN#1,C
LOCATE#!,1,25
PRINT#1,STRINGS(5,207)
RETURN

Text window scrolling can be used to implement a wide range of
games where something moves vertically past another sprite. It is
possible to implement a horizontal scroll using one of the control
registers in the Amstrad's graphics chip but a full discussion of
this hardware is beyond the cope of this book. However the
following program does illustrate the basic principles involved.

10
20
30
Z10
50
60
70
100

S% = 0
D%=S% MOD 256
R% = 13
GOSUB 1000
S%=S%+1
FOR J=1 TO 100:NEXT J
GOTO 20
GOTO 20

1000
1010
1020

OUT 8.BC00, R%
OUT &BD00.DX
RETURN

Subroutine 1000 sets register R% in the video controller to the
value in D%. In this case S% is used to determine the horizontal
offset of the screen and this produces the sideways scrolling
effect. Try using this routine in a game to scroll a landcape
background past a fixed object.

Charts and graphs - an 4
introduction to co-ordinates

The idea of using a co-ordinate pair x,y to pick out a single pixel is
so familiar that to most graphics programmers it is second nature.
However picking out an image pixel by pixel would be a laborious
task and much of computer graphics is concerned with finding
ways of specifying whole collections of pixels without having
explicitly to list the co-ordinates of each one. In this chapter we
look at some of the ways that co-ordinates can be used to generate
shapes, and programs to produce graphs and charts are used as
examples. By way of a contrast in the next chapter we look at
ways of making shapes without the direct use of co-ordinates.

Subroutines that draw lines

The most obvious way of writing programs that create graphics
displays is to simply go ahead and write some BASIC that creates
each element of the display. That is, if you are trying to draw a
house then write some BASIC that draws the rectangle for the
base of the house, then some BASIC that draws the roof, then the
windows and so on until you have the desired display. If you do
follow this simple method then you will find that your programs
are very long, very repetitive and very difficult to modify. A much
better way to program graphics is to write subroutines that
generate particular shapes and then call these subroutines in the
correct order. This approach is sometimes referred to as 'pro
cedural graphics'. The advantage of doing things this way is that
if you have written a subroutine that will draw a rectangle then it
can be re-used each time you want a rectangle. Of course, to be
really useful such a subroutine should allow you to specify where
the rectangle should be drawn, its size and its orientation. As
described in Chapter One the most important tool in creating
such shape-drawing subroutines are the relative graphics com
mands. 73

74 Charts and graphs - an introduction to co-ordinates

Using the relative graphics commands you can design a shape
without reference to where it is to be drawn. All you have to do is
choose a single point in the shape and treat this as if it was located
at 0,0. Then using DRAWR or PLOTR commands draw each line
or point in the shape. If you then use a MOVE X,Y statement
before all of the relative commands that produce the shape it will
be drawn with the point that you treated as at 0,0 at X,Y. This
recipe is in fact a lot easier to follow in an example. Suppose you
want to draw a square with a side of 100 units. If you treat the
lower left hand corner as 0,0 then the commands to draw the
square are

1010 DRAWR 0,100
1020 DRAWR 100,0
1030 DRAWR 0,-100
10Ü0 DRAWR -100,0

which can be thought of a drawing lines between the corners at
0,100 100,100 and 100,0. Now if you want to draw the square with
its lower left hand corner at X,Y then add

1000 MOVE X,Y

It's as easy as that.

In other words, you should always design shapes with one
corner located at the origin, using relative commands, and then
move the shape to the position at which it is required using an
absolute MOVE command.

All of this fuss about being able to move shapes to any position
only begins to pay off if you also make use of subroutines along
with location, size and orientation parameters. However in prac
tice it turns out to be too difficult to write subroutines that can
produce a given shape at any angle and usually we settle for
varying the location and size of the shape. (For a partial solution
to the rotation problem see 'chain coding' later in this chapter.)
For example, to draw a rectangle you should write a subroutine
something like

5000 REM rectangle H by W with
5010 REM bottom left corner at X,Y
5020 MOVE X,Y
5030 DRAWR 0,H

Subroutines that draw lines 75

5040 DRAWR W,0
5050 DRAWR 0,-H
5060 DRAWR -W,0
5070 RETURN

then you never have to write lines of BASIC to draw a rectangle
EVER again. In some senses a subroutine call like

X=10:Y=30:H=50:W=100:GOSUB 5000

which will draw a rectangle at 10,30 and 50 by 100, can be thought
of almost as an addition to the BASIC graphics commands. By
building up a collection of graphics subroutines of this sort you
can eventually reduce the production of a new graphics program
to nothing more than putting together the correct sequence of
subroutine calls!

A bar chart
As an example of the use of procedural graphics, and as an
introduction to the 'scaling' problem, consider the task of draw
ing a bar chart like the one shown in fig 4.1. The bar chart is
obviously made up of two graphics elements - a pair of axes and a

Fig 4.1 A bar chart

76 Charts and graphs - an introduction to co-ordinates

number of blocks of variable height. Writing subroutines for these
is not difficult. What is difficult is making sure that the bar chart
stays on the screen no matter what data has to be represented. If
the largest data value is MX% and this has to be represented by a
bar 300 units high to fill the screen then for each data unit the bar
should be 300/MX% graphics units high. Simply multiplying each
data value by 300/MX% gives the height of its corresponding bar
and so 300/MX % is called a 'scaling factor'. The final program is

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
199

REM bar chart
MODE 2
GOSUB 1000
GOSUB 2000
GOSUB 3000
X-50:Y-50:GOSUB 4000
FOR IX-1 TO NUMX
X-50+(IX-1)*50
Y-50
H-P(IX)
W-50
GOSUB 5000
NEXT IX
WHILE INKEY$=""
WEND
END

1000
1010
1020
1030
1999

REM init
NUMX-8
MXX-0
DIM D(NUMX),P(NUMX)
RETURN

2000
2010
2020
2030
2040
2050
2999

REM data
DATA 10,7,3.15,6,8,2,12
FOR IX-1 TO NUMX
READ D(IX)
IF D(IX)>MXX THEN MXX-D(IX)

NEXT IX
RETURN

3000
3010
3020
3030
3040
3999

REM stats calc
SC-300/MXX
FOR IX=1 TO NUMX
P(1%)=D(1%)*SC

NEXT IX
RETURN

4000
4010
4020

REM axes
CLG
MOVE X.Y

Subroutines that draw lines 77

4030 DRAWR 500.0
4040 MOVE X.Y
4050 DRAWR 0,500
4060 RETURN
5000 REM bar
5010 MOVE X.Y
5020 DRAWR 0.H
5030 DRAWR W.0
5040 DRAWR 0,-H
5999 RETURN

Subroutine 1000 initialises variables, NUM% is the number of
data values. Subroutine 2000 reads the data values from a DATA
statement into the array D and also finds the maximum value and
stores it in MX%. Subroutine 3000 calculates the scaling factor
SC% and works out the height of each bar in the array P%.
Subroutine 4000 plots a set of axes and subroutine 5000 draws a
single bar of width W and height H with its bottom left hand
corner at X,Y. The main program simply uses subroutine 5000 to
draw each bar in turn. You can replace subroutine 2000 by one to
read in data of your own.

Sets of pixels - functional representation

The use of subroutines to generate simple shapes works well but
so far we can only use it to generate shapes composed of straight
lines. There is clearly a need for some way of creating curves. As
already mentioned the fundamental graphics object is the pixel
and a single pixel can be specified by quoting its co-ordinates, but
quoting the co-ordinates of single pixels is not a practical method
of specifying the curves that we need. Somehow we have to find a
way of automatically generating the co-ordinates of pixels that
form the standard curves that we use. To take the most obvious
example, it is clearly unreasonable to store the co-ordinates of
each point on a straight line. What we need is an algorithm that
will generate the co-ordinates of each point on the line as needed.
Of course there is a well known algorithm for this in the form of
the 'equation of a line'

y=mx+c

where m and c are constants that govern the angle of the line and
its position on the screen respectively. This equation effectively
connects the values of the x and y co-ordinates for points that

78 Charts and graphs - an introduction to co-ordinates

make up the line. For example, if m=2 and c=3 then the equation
is

y=2x+3

and if x is 1 then y=2*l+3 or 5 and the point 1,5 is part of the line.
Notice that this only works because for every value of x there is a
value of y that gives a point that is part of the line. As x is varied
between 0 and XMAX a set of points is generated (not all of which
are guaranteed to lie on the screen) that form a straight line.

This idea of using an equation to generate sets of points that
make up a curve is easy to generalise. In essence all you need is
an equation that connects x and y. This is usually written as

y=f(x)

which means that for a given value of x the function 'f' can be
used to calculate a value of y that gives a point x,y, that is part of
the curve. As another example

y-SQR(rA2-x'2)

will, if SQR generates the positive square root, pick out all the
points that form the upper half of a circle centered on the origin,
and with radius r. In this case the equation only makes sense for
values of x that lie between —r and +r. Outside this range the
SQR function is trying to take the square root of a negative
quantity and will generate an error.

This way of specifying sets of pixels is known as 'functional
representation'. Although functional representation looks as if it
might be the key to all graphics problems it is in fact remarkably
difficult to find functions which generate any particular curve. For
example, you would search a long time before you found the
equation that generated the shape of a motor car! In practice there
are only three really useful curves that are specified by simple
functions: the straight line, the circle and the ellipse. These curves
can be used in combination to build up larger and more com
plicated shapes. In fact, most computer graphics involves nothing
but straight lines to construct outline shapes is described but
before moving on it is worth examining functional representation
and the problem of drawing curves in more detail.

A graph plotter
As equations of the form

Sets of pixels - functional representation 79

y=f(x)

are so important it is worth developing a program that will draw
the graph of any such equation. The basic idea behind such a
program is simply to generate a range of values of x, calculate y=
f(x) for each one and then plot the points x,y. The only problem is
once again scaling - that is making sure that the graph stays on
the screen. As in the case of the bar chart it is important to make
sure that the point corresponding to the largest value of y is on
the screen. In addition we also have to take care that the smallest
value of y (y can now be negative) and the full range of x can be
displayed on the screen. If the largest and smallest values of Y are
YMAX and YMIN then

(Y-YMIN)
(YMAX-YMIN)

is a quantity that varies between 0 and 1 (try Y=YMIN and Y=
MAX to see that this is true). Therefore

(Y-YMIN)*400
(YMAX-YMIN)

varies between 0 and 400 and so corresponds to the full range of
vertical screen co-ordinates. By the same sort of argument

(X—XMIN)*640
(XMAX-XMIN)

varies between 0 and 640 and so corresponds to the full range of
horizontal screen co-ordinates. These two functions are called
'scaling' functions and can be used to make any range of values
correspond to either the x or y co-ordinate range. Using these
functions the program is fairly easy to write, the values of XMIN
and XMAX can be obtained from the user and the values of YMIN
and YMAX can be obtained by working out the function for all the
values of X to be plotted and finding the smallest and largest
values of Y. The only question is how many values of X between
XMIN and XMAX should be plotted? The answer is that each
value of X should differ by an amount that moves the plotted
point on by one screen pixel. So the X step size should be

S=(XMAX—XMIN)*XINC
640

80 Charts and graphs - an introduction to co-ordinates

where XINC is the graphic increment (see Chapter One) for the
mode in use. If mode two is used then XINC is 1 and the equation
is simply

S=(XMAX—XMIN)
640

After all this discussion the program should now be easy to
understand

1 DEF FNE(X)-SIN(X)+SIN(2*X)
10 REM graph plot
20 MODE 2
30 GOSUB 1000
40 GOSUB 2000
50 CLG
60 GOSUB 3000
70 WHILE INKEY$ = ’’’’
80 WEND
99 END
1000 REM init
1010 INPUT ’’Draw graph starting at X=’’;XMIN
1020 INPUT ’’Last X value to be graphed-"; XMAX
1999 RETURN
2000 REM scale
2010 X-XMIN
2020 YMIN-FNE(X)
2030 YMAX-YMIN
2040 S =(XMAX-XMIN)/640
2050 FOR X-XMIN TO XMAX STEP S
2060 Y-FNE(X)
2070 IF Y>YMAX THEN YMAX-Y
2080 IF Y<YMIN THEN YMIN-Y
2090 NEXT X
2999 RETURN
3000 REM graph
3010 FOR X-XMIN TO XMAX STEP S
3020 Y-FNE(X)
3030 PLOT (X-XMIN)/(XMAX-XMIN)*640,

(Y-YMIN)/(YMAX-YMIN)*400
3040 NEXT X
3999 RETURN

Subroutine 1000 asks the user to supply the values of XMAX and
XMIN, subroutine 2000 finds YMAX and YMIN and finally
subroutine 3000 plots the graph using the scaling equations given

Sets of pixels - functional representation 81

above. The equation that is plotted is specified as the user-defined
function FNE an example of which is given as line 1 above. To
generate other curves, change line 1 to specify other equations.
The following are a few of the infinite possibilities:

x*x
x*x*x
SIN(x)

A sample of the output can be seen in fig 4.2.

Parametric curves
The idea of using a function to generate a straight line or curve is
easy to understand and use, but it has its limitations. For example
you cannot generate closed curves using functional represent
ation without using a number of different functions, each generat
ing a part of the curve. The reason for this is simple to see once
you realise that for a closed curve there is more than one value of
y for each value of x (see fig 4.3) and a single function can only
return one value of y for each value of x. A more powerful
method of representing curves is to use a function for each

Fig 4.2 Graph plot

82 Charts and graphs - an introduction to co-ordinates

co-ordinate. That is, instead of using a function that generates a
value of y given a value of x, i.e. y=f(x), use two functions

x=fl(t)
y=f2(t)

that generate a value of x and y given a value t. Using a function
to generate each co-ordinate of a curve is known as 'parametric
representation'. The variable't' is referred to as the 'parameter'
and all of the points that lie on the curve are generated as t varies
between an upper and a lower limit. Many interesting and
complicated curves are surprisingly simple to generate using a
parametric representation. For example, the functions

X=A*(3*COS(T)+COS(3*T))
Y=A*(3*SIN(T)-SIN(3*T)))
generate a curve called an 'astroid' as T varies between —PI and
+PI. The variable A is simply a constant that controls the size of
the astroid. The following program will draw a sequence of
astroids using the above functions

Fig 4.3 A closed curve has more than one value of y for each value of x

Set of pixels - functional representation 83

10
20
30
110
50
60
70
80
90
100
120

MODE 2
FOR A-l TO U
FOR T — PI TO PI STEP . 1
X-A*(3*COS(T)+COS(3*T))
Y=A*(3*SIN(T)-SIN(3*T))
X=X*10+320
Y=Y*10+200
IF T—PI THEN MOVE X,Y ELSE DRAW X.Y

NEXT T
NEXT A
END

Lines 60 and 70 simply scale the co-ordinates so that the astroids
fit on the screen. A sample of the output of this program can be
seen in fig 4.4. It is worth pointing out that there is a functional
representation of the astroid but it is very complex.

Fig 4.4 Astroid

84 Charts and graphs - an introduction to co-ordinates

There are a great many interesting curves that can easily be
generated using parametric representation but very few of them
are useful for anything other than forming abstract patterns. Even
though parametric representation is not the whole solution to the
problem of drawing curves it does lead to an efficient method of
drawing two of the most important closed curves, the circle and
the ellipse, and it is fundamental to a method of drawing arbitrary
curves, 'interpolation'.

Practical circles

Although it isn't worth going into great detail about how to draw
a straight line from first principles - the DRAW command makes
this an academic exercise - it is worth developing subroutines to
draw circles and ellipses. Many versions of BASIC come equipped
with circle and ellipse drawing commands but these have been
omitted from Amstrad BASIC. Rather than just quoting a pair of
finished subroutines to make up for this shortcoming the details
of how a pair of parametric equations are turned into efficient
subroutines is described as a short graphics study.

The parametric equations for the circle are

X=R*COS(T)+A
Y=R*SIN(T)+B

where R is the radius, the point at A,B is the centre and T varies
from 0 to 2*PI. The point X,Y moves completely around the circle
as T goes from 0 to 2*PI and this is the origin of the 'radian'
measure of angle. 2*PI is a full circle or 360 degrees, PI is half a
circle or 180 degrees and so on. These equations are very easy to
turn into a procedure that will draw a circle

10
20
30
U0
50

MODE 2
FOR RX=10 TO 200 STEP 10
AX=320:BX=199:CX=1:GOSUB 1000

NEXT RX
END

1000
1010
1020
1030
10U0
1050
1060

INC=.1
FOR T=0 TO 2*PI STEP INC
XX=RX*COS(T)
YX=RX*SIN(T)
PLOT XX+AX,YX+BX,CX

NEXT T
RETURN

Practical circles 85

If you run this program you will discover that while it does
indeed plot the outline of a circle on the screen there are gaps in
the circumference, and the size of the gaps increases with the size
of the circle. The reason for this behaviour is not difficult to work
out. The number of points plotted per circle is fixed by the value
of INC but it is obvious that the circumference of a large circle
needs more points than the circumference of a small circle. In
other words, INC should get smaller as the radius of the circle
increases. After a little algebra, or by trial and error, it is not
difficult to discover that line 1000 should be changed to

1000 INC=1.0/RX

Following this change all of the circles drawn by the subroutine
have continuous circumferences and so are satisfactory. However
the number of SIN and COS evaluations needed for each circle,
especially the large ones, makes the subroutine very slow so the
next thing to look at is efficiency.

Whenever you need to calculate SIN and COS at a number of
evenly spaced values there are ways of reducing the amount of
work involved. The key equations are the 'sum' formulae for SIN
and COS

COS(A+B)=COS(A)*COS(B) - SIN(A)»SIN(B)
SIN(A+B)=SIN(A)*COS(B)+COS(A)*SIN(B)

where A and B are angles. If you look back at the FOR loop in
subroutine 1000 you will see that it is calculating SIN and COS of
an angle that increases by INC each time through the loop. So if
COS(T) and SIN(T) are the values obtained the last time through
the FOR loop the new values are

COS(T+INC)=COS(T)*COS(INC) - SIN(T)*SIN(INC)
SIN(T+INC)=SIN(T)*COS(INC) + COS(T)*SIN(INC)

by use of the 'sum' formulae given earlier. If you examine this
equation you will notice that COS(INC) and SIN(INC) are con
stant and so they can be worked out just once before the loop
starts and then used each time through to update the old values
of SIN and COS. Starting from the initial values of COS(O) and
SIN(0), which equal 1 and 0 respectively, the FOR loop can
update both COS and SIN each time through the loop using
nothing but simple arithmetic. The 'sum' formulae can be used to
reduce the amount of work whenever a series of SIN or COS
values is required. This is a great saving in the amount of

86 Charts and graphs - an introduction to co-ordinates

calculation required to draw a circle but in this case there is still
one more simplification. On the Ith time through the FOR loop
the X and Y values calculated are

Xi=R*COS(T)
Yi=R*SIN(T)

the next time through the loop, that is the i+lth time, the X and Y
values calculated are

Xi+1=R*COS(T+INC)
Yi+1=R*SIN(T+INC)

Using the 'sum' formulae to expand the COS and SIN functions
gives

Xi+1=R*COS(T)*COS(INC) - R*SIN(T)*SIN(INC))
Yi+1=R*SIN(T)*COS(INC)+R*COS(T)*SIN(INC))

If you compare these expressions with those for Xi and Yi you will
see that

Xi+l=Xi*COS(INC)-Yi*SIN(INC)
Yi+l=Yi*COS(INC)+Xi*SIN(INC)

In other words, each time through the FOR loop the new co
ordinates can be obtained from the old co-ordinates by multi
plication and addition involving a pair of constants COS(INC)
and SIN(INC). We can also take advantage of the symmetry of a
circle to reduce the work involved in drawing it by three quarters.
If A+X,B+Y is a point on the circle then so are A—X,B+Y
A+X,B—Y and A—X,B—Y and this can be used to plot the full
circle from points calculated from the first quarter, (see fig 4.5).
Putting all of these ideas into practice give the following replace
ment for subroutine 1000 given earlier

1000 INC-l/RX
1010 IC-COS(INC)
1020 IS-SIN(INC)
1030 X-RX:Y-0
1040 PLOT AX-X.BX+Y
1050 PLOT AX+X.BX+Y
1060 FOR T=0 TO PI/2 STEP INC
1070 Z=X
1080 X-X*IC-Y*IS

Practical circles 87

1090
1100 PLOT
1110 PLOT
1120 PLOT
1130 PLOT
11U0 NEXT T
1150 RETURN

Y=Z*IS+Y*IC
AX+X,BX + Y
AX-X,BX+Y
AX+X,BX-Y
AX-X,BX-Y

Notice the use of the variable Z in line 1070 to store the value of X
for use in calculating the update to the Y co-ordinate in line 1030.
If you run this subroutine along with the main program given
earlier you will see the same set of circles - but much more
quickly!

A pie chart
As an example of the use of the circle drawing program, and of
the knowledge of how a circle is drawn, consider the problem of
writing a program to draw a pie chart like that shown in fig 4.6.
The problem of drawing the circle is now easily solved using the
subroutine given in the previous section. The problem of dividing
it up into segments that have areas in the same ratio as the data
values is a little more tricky. If there are three data values, say 50,
30 and 20, then the pie chart should have three segments with
areas equal to 50%, 30% and 20% of the entire circle. Working out

Fig 4.5 Circle showing the use of symmetry

88 Charts and graphs - an introduction to co-ordinates

Fig 4.6 Pie chart

segment areas is a little difficult however and it is easier to use the
fact that the areas of the segments are in the same ratios as the
segment angles. So, in the previous case, if the segment angles
are 180, 108 and 72 degrees then the segments will have the
correct areas. In other words if a data value is given by D, and the
total of all the data values is TT, then the angle of the segment
that represents it is given by

T=360*D
TT

or
T=2*PI*D_

TT

degrees

radians

You can think of 2*PI/TT as a sort of scaling factor that converts
the data values into segment angles between 0 and 2*PI. The
reason that the segment angles are easier to use than areas is
simply that if you want to draw a radius at angle T from the start
of the circle all you have to do is use the pair of commands

move a%,B%
DRAW A%+R%*COS(T),BX+R%*SIN(T)

A pie chart 89

The final program is

10
20
30
40
50
60
70
199

REM pie chart
MODE 2
GOSUB 1000
GOSUB 3000
GOSUB 4000
GOSUB 2000
GOSUB 5000
END

1000
1010
1020
1030
1040
1050
1060
1070
1080
1999
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2999

REM init
RX=100
AX=320
BX=199
CX = 1
MXX = 5
DIM D(MXX).P(MXX)
T = 0
TT = 0
RETURN
REM circle
INC-2/RX
IC-COS(INC)
IS=SIN(INC)
X-RX:Y-0
PLOT AX-X.BX+Y
PLOT AX+X.BX+Y
FOR T=0 TO PI/2 STEP INC
Z-X
X=X*IC-Y*IS
Y=Z*IS+Y*IC
PLOT AX+X.BX+Y
PLOT AX-X.BX+Y
PLOT AX+X.BX-Y
PLOT AX-X.BX-Y

NEXT T
RETURN

3000
3010
3020
3030
30/10
3050
3999

REM data
DATA 10,3.6,15.6
FOR IX=1 TO MXX
READ D(IX)
TT-TT+D(IX)
NEXT IX
RETURN

U000
4010
4020
4030

REM stats calc
N-2*PI/TT
FOR IX=1 TO MXX
P(IX)=D(IX)*N

90 Charts and graphs - an introduction to co-ordinates

4040
4999

NEXT IX
RETURN

5000
5030
5040
5050
5060
5065
5070
5999

REM draw segs
FOR I% = 1 TO MXX
T=T+P(I%)
MOVE AX.BX
DRAW AX+RX*COS(T),BX+RX*SIN(T)
FOR J=1 TO 250:NEXT J

NEXT IX
RETURN

Subroutine 1000 initialises all of the variables and sets up the
necessary arrays; subroutine 2000 is the circle drawing routine
given at the end of the previous section; subroutine 3000 reads the
data in and finds its total in TT; subroutine 4000 works out the
scaling factors and segment angles and finally subroutine 5000
draws the radius lines in at the correct angles.

Ellipses
Now that we have a subroutine that draws circles the next step is
to extend it. Perhaps the most useful shape after a circle is an
ellipse and this can be drawn using similar techniques. The
parametric equations for an ellipse (with its major or minor axis
horizontal) are simply

X=R1*COS(T)+A
Y=R2*SIN(T)+B

where the ellipse is centered on A,B, and R1 and R2 are the
horizontal and vertical 'radii' of the ellipse. Using the same
methods as for the circle it is not difficult to work out that

Xi+1=Xi*COS(INC) - Yi*SIN(INC)*Rl/R2
Yi+1 =Xi*SIN(INC)*R2/Rl - Yi*COS(INC)

Using these equations to update the co-ordinates each time
through the FOR loop gives the following program

10
20
30

MODE 2
FOR E-l TO 2 STEP .2
AX-320:BX-199:CX-1:RIX-100:R2X-E*R1X:
GOSUB 1500

40 AX=320:BX=199:C%=1:R2X=100:R1X-E*R2%:
GOSUB 1500

50
60

NEXT E
END

Ellipses 91

1500 REM ellipse
1510 IF R1%>R2% THEN INC=1.0/R1% ELSE INC=1.0/R2%
1520 IC=COS(INC):IS=SIN(INC)
1530 IS12=IS*R1%/R2%:IS21=IS*R2%/R1%
15U0 X=R1%:Y=0
1550 PLOT AX+X.BX+Y
1560 FOR T=0 TO 2*PI STEP INC
1570 Z=X
1580 X-X*IC-Y*IS12
1590 Y=Z*IS21+Y*IC
1600 PLOT A%+X,B%+Y
1610 NEXT T
1620 RETURN

the output of which can be seen in fig 4.7. Once again a speed
improvement is possible if the symmetry of the ellipse is used but
this is left as an exercise for the reader.

Fig 4.7 Ellipse

92 Charts and graphs - an introduction to co-ordinates

The final subroutines given for drawing circles and ellipses ar«
still capable of improvement - for example you could change th«
circle program so that it will draw an arc between two giver
points - but they are good enough to be used if an assembly
language subroutine is not available. The idea of relating the new
co-ordinates to the previous co-ordinates is a very general one ir
graphics and you should always look out for such possibilities.

Chain code - a way of rotating shapes

There is an alternative way of describing the shape of an outline
in terms of straight line segments that has advantages when ii
comes to scaling and rotation - chain coding. The fundamenta
idea of chain coding is to specify a starting position, using the
usual X,Y co-ordinate system, and then describe the shape ir
terms of movements from the current position. For example, c
square could be described as

start at X,Y
then move 10 units up
then, from your new position, move 10 units to the left
then 10 units down and 10 units right

You can work out a chain code for any shape without too much
trouble and once you have done it, the description itself forms í
program that produces the shape! In addition all this is possible
without reference to a co-ordinate system, apart from fixing the
starting position of the outline. You should be able to see that, ir
this form, chain coding is very similar to the way that the relative
graphics commands were used at the start of this chapter.
However if the chain code is represented in a symbolic form it car
be easily converted to a recipe for drawing a shape at different
angle.

The best way to illustrate the ideas behind chain coding is tc
give a program that will interpret a simple chain code. The
following program recognises four movement commands U, D, 1
and R, each of which can be followed by a number. The meaning
of the commands is obvious: U means up, D means down, L
means left and R means right. You can type collections ol
commands into the program and each will be obeyed in turn. Foi
example, U10R10D10L10 will draw a small square. As well as the
four movement commands the program will also obey a rotatior
command of the form 'An' where A stands for Angle and n is 1, 2,
3 or 4. Following An all shapes specified by a chain code will be

Chain code - a way of rotating shapes 93

drawn rotated by an angle of n*90 degrees. This sounds like
something that is difficult to implement until you realise that a
rotation of 90 degrees can be produced by simply changing U to
R, R to D, D to L and L to U in any chain code. In the same way a
rotation of any multiple of 90 degrees can be produced by a
permutation of the letters standing for the movement commands.
If commands that produce lines at 45 degrees are added, then
rotations of any multiple of 45 degrees can be produced using the
same method. For example if you type in the following program
and enter the chain code U100R50D50L50R50D50 then you will
see the shape of the letter A. If you enter the same chain code a
second time but preceded by Al then you will see a letter A on its
side and so on.

10
20

MODE 2
GOSUB 1000

30
210
50

GOSUB 2000
GOSUB 3000
GOTO 30

1000
1010
1020
1030

C$="URDL"
MOVE 320,199
R = 0
RETURN

2000
2010
2020
2030
20210
2050

LOCATE 1,25
PRINT SPC(79):
LOCATE 1,25
PRINT "CHAIN CODE
INPUT S$
RETURN

3000
3010
3020
3030
30210
3050
3060
3070
3080
3090
3100
3110
3120

1 = 1
WHILE I<-LEN(S$)
GOSUB 9000
D$-MID$(S$,1,1)
L-VAL(MID$(S$,1 + 1,LEN(St)))
A-INSTR(1,Ct,D$)
IF AO0 THEN A=A+R
IF A>21 THEN A-A-21
GOSUB 21000
IF Dt="A" THEN GOSUB 7000
1 = 1 + 1

WEND
RETURN

21000
21010
21020

IF A-l THEN GOSUB 5000
IF A=2 THEN GOSUB 5500
IF A-3 THEN GOSUB 6000

94 Charts and graphs - an introduction to co-ordinates

4030
4040

IF A=4 THEN GOSUB 6500
RETURN

5000
5010

DRAWR 0,L
RETURN

5500
5510

DRAWR L,0
RETURN

6000
6010

DRAWR 0,-L
RETURN

6500
6510

DRAWR -L,0
RETURN

7000
7010

R-L
RETURN

9000
9010
9020
9030

WHILE ASC(MID$(S$,I.1))<57 AND I<LEN(S$)
I-I + l

WEND
RETURN

The program works by scanning the chain code stored in the
string S$ and finding each single letter command in turn. The
current position in the string is stored in I and subroutine 9000
will add one to I until it is 'pointing' at a letter rather than a
number. (That is, subroutine 9000 is a 'find the next letter in the
string' procedure.) This letter is then stored in D$ and the VAL
function is used to convert the digits following it into a numeric
value stored in L. The command letter in D$ is then searched for
in C$, which is a sort of 'command table'. If the letter is found its
position in C$ is used to decide which of the four movement
subroutines should be called. However if the letter is an 'A' then
subroutine 7000 is called, which simply sets the variable R to the
value stored in L. The reason for doing this is that R is added to
the position returned by the INSTR function and so 'shifts' the
apparent positions of the commands in the command table C$ as
required to implement a rotation. For example if R is 0 and the
command is 'U10' then the letter stored in D$ is 'U', its position in
C$ is 1 and so subroutine 5000 is called. However if R has been set
to 1 by a 'Al' command then, even though 'U' is still the first
letter in C$, subroutine 5500 is called as if the command had been
'R10'. If you study the program you should be able to add
commands for movement in 45 degrees and 45 degree rotations.
Other features that you might like to add include an absolute
move command to position the graphic cursor at X,Y, a scaling

Chain code - a way of rotating shapes 95

command that alters the size of a shape by simply setting a
multiplier for L and a colour setting command.

Chain codes are a useful way of dealing with some graphics
problems that involve shapes that have to be printed anywhere,
at any size and with a rotation that is a multiple of 90 or 45
degrees. However they still don't solve the problem of drawing
something rotated through any given angle - a solution to the
more general problem is given in Chapter Six.

5 Freestyle
graphics - painting

Co-ordinates are such a standard way of doing things that it can
be difficult to imagine that there is another approach to graphics.
In Chapter Four the basic methods of using co-ordinates to draw
regular shapes were described and these are very successful if the
object being drawn is either regular or can be accurately mea
sured. So, if you are interested in the exact representation of a
building, a floor plan or an electronic circuit diagram then co
ordinate based methods are the best. However, if you are
interested in creating original artwork then methods based on the
direct manipulation of the screen display, so called 'co-ordinate
free' methods, are far more suitable.

This idea of working directly with the patterns that the pixels
form is a difficult idea, at first, because we are so used to
programming in terms of co-ordinates. The best way of seeing the
essence of the approach is to think about what happens when you
draw with a more traditional technology - pencil and paper.
Unless you are using a drawing board for technical drawing, most
pencil sketches are not carried out in terms of co-ordinates. You
draw rough lines and shade in areas without measuring their
exact position. If something doesn't look right then you erase it
and modify it. In this sense you are 'moulding' the patterns of
dark and light directly. If you change the technology used with
this approach to light pen and screen then the same direct
interaction with the pixels that form the image is possible -
however, surely the computer can offer something more than just
the pencil and paper operations of marking and erasing? The
answer is most certainly 'yes' but you might be surprised at the
amount of computer power necessary to achieve it.

In practice, using entirely 'co-ordinate free' methods turns out
to be an unnecessary burden. The best compromise is often to use
co-ordinates as a way of implementing an idea that is essentially

96 co-ordinate free. However sometimes it has to be admitted that

Pointing at points 97

some things are best done using a co-ordinate approach. For
example it is difficult to think of a better way of drawing a straight
line than using a functional equation to join two end points. The
co-ordinate free approach is often more a matter of spirit rather
than technique - it could eqully well be called the 'artistic'
approach to computer graphics.

Pointing at points

The fundamental data unit underlying all graphics is the point or
pixel. Obviously, if we are going to draw on the screen then there
must be some way of entering information about pixels. The only
truly co-ordinate free method of doing this is the light pen, or
similar device, that allows you physically to point at the pixel or
pixels that you want to change. Unfortunately, light pens are not
popular or common input devices and so a co-ordinate based
method has to be used. The most obvious method of selecting a
point on the screen is to use a visible marker for the current
position of the graphics cursor. How this visible graphics cursor is
moved around the screen determines how acceptable this pixel
selection method is. For example, the worst possible way of
controlling the graphics cursor is to use the four cursor keys to
update its position. This produces a very difficult-to-use system
that tends to stifle creativity. A much better method is to use a
joystick to supply x,y co-ordinates directly. The trouble with this
method is that the Amstrad's joysticks are not true proportional
joysticks, they are simply extensions of the keyboard. Thus using
the Amstrad joysticks for co-ordinate free graphics has no real
advantage over using the keyboard. For this reason the programs
given in the rest of this chapter use the cursor keys to control
position. This is not ideal, and if you do have either a true
proportional joystick or a mouse then it is worth changing the
programs to use it. A mouse is a small box with a pair of wheels or
a ball bearing that allows it to be pushed around on the table top
next to the computer. As the mouse is moved it sends signals to
the computer to tell it how far in the horizontal and vertical
direction it has moved. In this sense using a mouse is very similar
to using the cursor keys to update the position of the graphics
cursor but in practice it is very much easier to use.

Depositing pixels - the brush

Programming a graphics cursor that moves around the screen

98 Freestyle graphics - painting

according to which cursor key is pressed is relatively easy. The
only complication is that, to avoid the cursor modifying any
image already on the screen, it has to be drawn using the XOR
graphics ink mode. When the XOR graphics ink mode is selected,
printing or drawing something once makes it appear on the
screen, and printing or drawing it a second time at exactly the
same position removes it and restores the screen to its original
condition. Once you have a graphics cursor under your control
you can use it to specify any pixel on the screen - but what next!
You could set things up so that pressing a key on the keyboard
would change the pixel that the graphics cursor was currently
over to a specified colour. Using this idea you could change one
pixel at a time - clearly drawing lines and shapes is going to take a
long time! Looking back at more traditional drawing methods
suggests that an approach that might be worth trying is to copy
the action of a paint brush or a pencil. As a paint brush is drawn
across the paper or canvas it leaves a trail or paint behind it. This
is easy to implement. When a key, COPY say, is pressed any pixel
that the graphics cursor passes over will be changed to the
selected colour.

If you try this out what you will find that it is very difficult to
produce anything but 'spidery' sketches. The trouble is that it is
like trying to draw with an extremely fine pencil or brush. The
idea is good but we haven't implemented the 'brush' idea with
sufficient flexibility. A brush should clearly affect more than one
pixel at a time - but how many? The answer is that we need a
range of 'brushes' varying in thickness and perhaps even in
shape. The characteristics of a brush are defined by the shape that
it produces when it isn't moved around the screen. For example,
in fig 5.1 you can see a circular brush and a rectangular brush. If

Fig 5.1 The results of using a round and a square brush

Depositing pixels - the brush 99

you were to move the graphics cursor to a position and select a
one of the three brushes then it would produce the shape shown
in fig 5.1. Moving the graphics cursor with the brush still selected
would leave a trail of brush patterns behind it. The circular brush
will allow you to draw lines of equal thickness in all directions.
The rectangular brush will produce lines of different thickness
depending on which way it is moving. Obviously each brush has
to be supplied in a range of sizes to enable the thickness of the
line to be controlled. Notice also that erasing can be done by
painting with a brush set to the local background colour.

Simple brushes can easily be implemented as user-defined
characters on the high resolution screen, that is printed following
a TAG command. For example, if you want a round brush then all
you have to do is to define a character in the shape of a disk. This
character can then be used as a marker for the current position of
the graphics cursor. If the character is printed using the XOR
graphics ink mode it will appear to move around the screen in
response to the cursor keys without affecting anything. However
if the graphics ink mode is changed to OR, in response to
pressing the COPY key say, then printing the character becomes a
permanent change to the screen and moving it leaves a trail
behind it exactly as required for a brush.

Given the basic concept of the software generated brush then
all sorts of ideas spring to mind for more sophisticated brushes,
for example, texture brushes. Instead of changing every point
within the brush's area it could affect a pattern of points. A
random pattern would give a stippling brush and wavy lines
would make drawing a seascape really easy! The idea of a brush is
clearly worth examining in more detail.

Functional brushes
All of the brushes described in the last section have one thing in
common - they all deposit 'paint' in a way that depends only on
their shape and where they are on the screen. A functional brush
is once again an obvious extension of the brush idea but it
includes the extra facility of looking at what pixels are already on
the screen before depositing any 'paint'. For example, suppose
that by accident you had 'splashed' some foreground pixels into a
region of the screen. You could remove them by taking a very fine
brush and touching them out. However, you could use a brush
that examines each pixel within its area and changes it to the
colour of the majority of its neighbours. By passing such a 'clean
up' brush across the splashed area a few times it should be
possible to get rid of any mess without damaging what was
already present before the splash. Another example of a func

100 Freestyle graphics - painting

tional brush is one that will 'sharpen corners'. It can be difficult to
draw accurately at the best of times and many corners in an image
will be ragged, as shown in fig 5.2. To sharpen these corners all
that is needed is a brush that will introduce the missing pixel
where a row and a column of pixels 'cross', as in fig 5.2. Passing
this brush over the image will only change the points in question.
One of the great advantages of a functional brush is that, using it,
you don't run the risk of accidentally damaging any part of the
image that you have already completed.

Pattern brushes
It is easy to apply areas of even colour using a traditional or a
computer paint brush, but filling an area with a regular pattern is
difficult. For example, suppose that you had just drawn the
outline of a house and wanted to draw a brick pattern on the
walls. The only way that this could be achieved using a simple
brush is to paint in each brick in turn! Clearly one of the ways that
computer art could be made easier than traditional art is by the
provision of a brush that will deposit paint in a regular pattern,
that is a 'pattern brush'.

A pattern brush is clearly a special case of a functional brush
but it is very special in that the colour of every pixel on the screen
is determined by its position on the screen. You might think that
all you have to do to implement a pattern brush is to define a
character which produces the pattern when printed and then use
it as a simple brush as described erlier. If you try this you will
discover that all you get is a solid trail left behind the brush as it
moves. The reason for this is that the foreground points in the
brush set each screen pixel they pass over irrespective of the
pattern that you are trying to produce.

RAGGED CORNER

BY BRUSH
Fig 5.2 The use of a brush to 'touch up' a corner

Depositing pixels - the brush 101

The correct way to produce a pattern brush using characters
involves defining a character that produces that appropriate
pattern at each location on the screen. To understand this idea it
is helpful to imagine a pattern, diagonal lines say, printed across
the entire screen. As a brush is moved across this screen the
portion of the pattern that passes under the brush is exactly what
the brush has to produce if it is to paint the pattern on a blank
screen. If you think about it for a moment you should be able to
see that this implies that the character printed at each location has
to change according to the location. This sounds like far too much
work for a program, especially a BASIC program to do in a
reasonable amount of time but if the pattern repeats itself over a
small area of the screen the number of different characters that
you need is reduced to manageable proportions. One method of
producing pattern brushes is decribed in detail later as part of
AMART, an interactive painting program.

Scan filling

The problem of filling an outline with a given pattern has now
been solved as long as the artist using the pattern brush is skillful
enough to keep within the outline! Filling areas with even tones
or patterns is time-consuming and prone to mistakes. This makes
it an ideal candidate for improvement as a computer implement
ation. A 'scan fill' brush automatically produces a given pattern
within the confines of an outline. All that the user has to do is to
move a marker to a position within the outline and then press a
key, COPY say, and sit back and watch the outline fill with the
pattern.

There are two distinct methods of filling an outline - 'scan fill'
and 'flood fill'. The difference is that only the flood fill method
guarantees to fill an outline without leaving any unfilled areas. As
you might expect scan fill is much easier to program and the areas
that it leaves are easy to deal with by subsequent scan fill
operations.

As an example of a scan fill, consider the problem of filling a
circle with a colour to produce a disk. Starting from a given point
x,y the procedure is to fill the circle one horizontal line at a time.
Starting from x,y the pixels to the right of this point are examined
in turn until the first non-background pixel is found. (Recall that
the function TEST(x,y) can be used to discover the logical colour
of the pixel at x,y). Then using this pixel as a starting point a
similar scan to the left is performed, once again looking for the
first non-background pixel. The only difference is that during this

102 Freestyle graphics - painting

left scan each pixel that is tested is subsequently set to the
foreground colour - thus drawing a line from the right hand edge
of the circle to the left hand edge. Once this line is complete the
entire line scan is repeated one line down, that is using x,y-2 as
the starting point and so on down the screen. This downward
scan is stopped when the starting point for the line scan is found
to be not a background pixel. When the downward scan is
complete an upward scan is performed, so filling the top half of
the circle. If you are doubtful about the details of this process then
the best way to clarify what happens is to watch the circle being
filled by the following program

10
20
30
ne

MODE 2
RX-100:AX-320:BX-200:GOSUB 1000
AX-320:BX-200:GOSUB 2000
END

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130 11/10
1150

INC-l/RX
IC-COS(INC)
IS-SIN(INC)
X-RX:Y-0
PLOT AX-X,BX+Y
PLOT AX+X.BX+Y
FOR T-0 TO PI/2 STEP INC
Z-X
X-X*IC-Y*IS
Y-Z*IS+Y*IC
PLOT AX+X.BX+Y
PLOT AX-X,BX+Y
PLOT AX+X.BX-Y
PLOT AX-X.BX-Y

NEXT T
RETURN

2000
2010
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

XTX-AX:YTX-BX
WHILE TEST(XTX,YTX)=0
GOSUB 3000
XTX-XTX-1
GOSUB 4000
YTX-YTX-2:XTX=AX

WEND
XTX-AX:YTX-BX+2
WHILE TEST(XTX,YTX)=0
GOSUB 3000
XTX-XTX-1
GOSUB 4000
YTX-YTX+2:XTX-AX

WEND
RETURN

Scan filling 103

3000 WHILE TEST(XTX.YTX)=0
3010 XTX=XTX+1
3020 WEND
3030 RETURN
4000 WHILE TEST(XTX.YTX)=0
4010 PLOT XTX,YTX,1
4020 XTX-XTX-1
4030 WEND
4040 RETURN

Subroutine 1000 is the circle drawing program given in the
previous chapter. Subroutine 2000 performs the scan fill, starting
from the point A%,B%. It calls subroutine 3000 to perform the left
scan and subroutine 4000 to perform the right scan.

After seeing the results of the scan fill program given above you
might find it difficult to imagine a case where an area is left
unfilled. As an example of this add the following line to the
previous program

25 RX-40:AX-370:BX-200:GOSUB 1000

As you can see in fig 5.3 the new circle blocks the line scan to the
right and this results in a sort of shadow effect. If this scan fill
routine was part of an interactive painting program then all the
artist would have to do is to perform a second scan fill with the
starting point somewhere within the unfilled area.

Fig 5.3 The effect of a scan fill

104 Freestyle graphics - painting

With a simple modification, the scan fill program can be made
to fill outlines with a specific pattern. All that is needed is a test
that determines the colour of a point that is about to be plotted as
part of the left line scan. The details of how this is done are given
as part of the painting program described below.

Users of the Amstrad 664 have access to a special flood fill
command which will do a better job than the scan fill subroutine
given above. The command

FILL L

will perform a flood fill starting from the current position of the
graphics cursor. If you would like to see how this differs from the
scan fill, change line 30 in the previous demonstration program to
read

30 AX-370 :BX-200: MOVE AX,BX:FILL 1

In both cases you will find that FILL is much quicker than
subroutine 2000 and in the second case it also succeeds in filling
the entire circle. However, the FILL command does have the
disadvantage that it cannot be used to fill an area with a regular
pattern and so it will not be used as part of the interactive
painting program given later in this chapter.

Electric pencils

Even though brushes in one form or another serve for most of the
tasks in computer assisted art, there is still the occasional need to
draw a straight line. In this case, what we are interested in is a
computer equivalent of the ruler and pencil. While it would be
possible to create something that was the software equivalent of a
ruler and pencil a better method of drawing straight lines inter
actively is based on the 'rubber band' principle. Rubber banding
is a general technique for drawing lines and shapes that will be
described in more detail in the next chapter. However drawing a
line using rubber banding is quite simple. One end of the line is
considered fixed at a specified position and the other end is
drawn to the current position of the graphics cursor. If the line is
drawn using the XOR graphics ink mode and blanked out just
before each move of the graphics cursor, the effect produced
mimics a rubber band stretched between a fixed point and the
moving graphics cursor. All that is needed to turn this into a good

Electric pencils 105

way of drawing lines is some way of specifying the position of the
fixed point and some way of making the line permanent once it
has just been stretched into its desired position. To enable a series
of joined up lines to be drawn the best way of moving the fixed
point is to have its position transferred to the current position of
the graphics cursor when a specific key, F7 (keypad 7) say, is
pressed. To make the line permanent it simply has to be drawn
with the OR graphics ink mode set, once again in response to a
specific key press, the COPY key say. Using this method of
control, a line could be drawn between any two points by first
moving the graphics cursor to the first point, pressing F7 to move
the fixed point to the position of the graphics cursor and then
moving the graphics cursor to the second point on the line. All
the time that the graphics cursor is being moved the line is being
re-drawn between the fixed point and the position of the graphics
cursor so giving the user feedback on how the line looks. After
making this line permanent by pressing the COPY key a second
line can be drawn connected to the first by pressing F7 and then
moving the graphics cursor. It is amazing how easy this method
of drawing lines is. If you have any difficulty in understanding
the explanation then simply try the pencil option in the inter
active painting program given below.

As well as drawing lines by rubber banding it is possible to
draw all manner of shapes. For example, to draw a rectangle
using rubber banding all you have to do is use the same idea of a
fixed point and a moving point but in this case they determine
opposite corners of the rectangle rather than the two ends of a
line. By continuously re-drawing the rectangle as the graphics
cursor is moved, the user can see it change and interactively
adjust its size and position. A rubber band rectangle drawing
option is also included in the interactive painting program given
below.

An interactive painting program - AMART

Most of the ideas introduced in this chapter have been incorpor
ated into a single large program - AMART. Although it is written
entirely in BASIC it includes a surprising number of features. It
includes a pattern brush in a range of sizes and shapes, an eraser,
a scan fill brush, a line drawing pencil and a rectangle drawing
option. It also includes the facility to save and load pictures using
disk or tape and printer dump option. No attempt has been made
to use colour. The program paints in black on a white back
ground, the emphasis being on drawing in high resolution. If you

106 Freestyle graphics - painting

want to introduce colour then you will have to change the
program to work in MODE 1 and add coloured patterns. This is
not at all difficult in theory but you might find that the low
resolution and small screen size results in an unsatisfactory
program.

Rather than use commands typed in from the keyboard to
control the program, an 'icon' based menu (one that uses symbols
to represent choices) has been used as an example of how
graphics can be used as to create a user-friendly environment.
Indeed it is probably easier to learn to use the program by using it
than by reading this description! When the program is run the
screen is cleared and a number of menu boxes are printed down
the right hand side, see fig 5.4. To select one of the options all the
user has to do is move the graphics cursor over the menu box that
contains either the relevant symbol (icon) or command word and
then press the COPY key. The menu is divided into five sections:
starting at the top we have the pattern area, then the command
words, the brush shapes, the function area and finally the current
pattern display. The position of the graphics cursor is shown by
either one of the paint brush shapes or by one of the command
symbols - pencil, rubber etc - but it changes to a flashing square

Fig 5.4 The menu displayed by AMART

An interactive painting program - AMART 107

when it moves into the menu area. At the top of the menu there
are a number of patterns displayed, any of which can be selected
for use by the paint brush. The current pattern is displayed in a
large rectangle at the bottom of the menu. What you can do when
the graphics cursor is in the drawing area depends on the
function you have selected. The currently selected function or
brush shape is marked by being printed in inverse colours.

If you have selected the brush then the graphics cursor appears
as the currently selected brush shape in the currently selected
pattern. You can move this around the screen without affecting
anything that is already present. If you press the COPY key the
brush will paint the current pattern as it moves; pressing it a
second time returns the brush to its original state. If you select the
rubber then you can rub out foreground (black) pixels by moving
the rubber over them and pressing COPY. Selecting the pencil
will produce a rubber band line on the screen. You can make the
displayed line permanent by pressing COPY and you can move
the fixed point to the current position of the pencil by pressing F7
(that is 7 on the numeric keypad). Similarly selecting the square
will produce a rubber band rectangle, one corner of which is fixed
and the other which can be moved using the cursor keys. The
rectangle can be made permanent by pressing COPY and the
fixed corner can be moved to the current position of the moving
corner by pressing F7. Finally if the roller is selected nothing
happens until the COPY key is pressed when a scan fill is
performed, starting from the position of the roller and using the
currently selected pattern. All of the drawing on the screen is
performed using an OR graphics ink mode so it has the effect of
adding to, rather than overwriting, what is already there.

The command words are self-explanatory and selecting one of
them causes the corresponding action to happen. The SAVE and
LOAD commands are worth commenting on as they begin
working immediately without printing any messages (for obvious
reasons) and save and load the screen data using a file called
'PIC'. This use of a single name works well for tape if you restrict
yourself to one drawing stored per tape but for disc it is necessary
to rename files from 'PIC' to 'PIC1' and so on to avoid confusion.

A feature of the cursor keys is that they can be used in
combination to produce diagonal movement. Normally the
graphics cursor moves one pixel at a time and this tends to be too
slow for most operations apart from accurate drawing. To move
the graphics cursor by a larger amount each time, all that is
necessary is to press the F9 key (9 on the numeric key pad). A
complete summary of the key functions is

108 Freestyle graphics - painting

cursor keys -move the graphics cursor and hence the
currently selected function icon or the control
cursor

COPY -draw command for functions that draw pixels
and an erase command for the eraser

F9 -increase the amount the cursor moves at each
step

F7 -move the fixed point in rubber band
operations to the current location of the
movable point

Note: F9 and F7 are the 9 and 7 keys on the numeric keypad just
below the cursor keys.

The complete program listing can be seen below. It is a long
listing so take care when you enter it. If a particular function or
feature doesn't work when you first try it then make use of the
subroutine table given in the next section to narrow down the
area in which the typing error is likely to be.

10 MODE 2
20 GOSUB 1000
30 GOSUB 5000
40 WHILE QUITX=0
50 GOSUB 2000
80 GOSUB 500
100 WEND
199 STOP
500 IF XX+DXX>=536 THEN GOSUB 4500:RETURN
510 IF FX = 1 THEN GOSUB 4000:RETURN
520 IF FX=2 THEN GOSUB 4800:RETURN
530 IF FX = 3 THEN GOSUB 4900:RETURN
540 IF FX=4 THEN GOSUB 4200:RETURN
550 IF FX=5 THEN GOSUB 4600
560 RETURN
1000 REM INIT
1010 INK 0,26
1020 INK 1,0
1030 PRINT CHR$(23)5CHR$(0);
1040 PX=3:REM PX IS PATTERN NUMBER
1050 SX=1:REM SX IS BRUSH NUMBER
1060 DX=0:REM DX IS DRAW INDICATOR
1065 FX=1:REM FX IS FUNCTION
1066 MX=0:REM IS HIGH RES MARKER
1070 REM pattern data
1080 DATA &8888, &8888,&8888,&8888,&8888,&8888,&8888,&8888
1090 DATA &8888, &8888,&8888,&8888,&8888,&8888,&8888,&8888
1100 DATA &FFFF,&0000,&FFFF,&0000,&FFFF,&0000,&FFFF,S0000

An interactive painting program - AMART 109

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1500
1510
1520
1530
154-0
1550
1590
1600
1610
1620
1630
1640
1650
1700
1710
1720
1730
1740
1750
1800
1850
1860
1870
1880
1890
1895
1900
1910
1920

DATA 8FFFF, 80000,8FFFF, 80000,8FFFF, 80000,8FFFF, 8,0000
DATA 8FFFF,&FFFF,83333,8.3333,8FFFF,&FFFF,83333,83333
DATA 8FFFF,&FFFF,83333,83333,8FFFF,8FFFF,83333,83333
DATA &FFFF,8FFFF,8FFFF,8FFFF,8FFFF,&FFFF, 8FFFF, 8FFFF
DATA &FFFF,8FFFF,8FFFF,8FFFF,&FFFF,8FFFF,8FFFF, 8FFFF
DATA 8FFFF,88181,88181,8FFFF,8FFFF,&1818,81818,8FFFF
DATA &FFFF, 88181,88181,8FFFF,8FFFF, 8.1818, 81818, 8FFFF
DATA 81111,82222,84444,88888,81111,82222,84444,88888
DATA 81111,82222,84444,88888,81111,82222,84444,88888
DATA 88888,84444,8.2222,8.1111, 8.8888,8.4444,8.2222,8.1111
DATA 88888,84444,82222,81111,88888,84444,82222,81111
DATA &AAAA, 8AAAA, &AAAA, &AAAA, 8AAAA, 8AAAA, &AAAA, 8.AAAA
DATA 8.AAAA, 8.AAAA, 8AAAA, 8AAAA, 8.AAAA, 8.AAAA, 8AAAA, 8AAAA
DATA 8FFFF, 8.FFFF, 8.FFFF, 8FFFF, 8.0000,8.0000,8.0000, 8,0000
DATA &FFFF, &FFFF, &FFFF, 8.FFFF, 8.0000, 8,0000,80000,80000
DATA &F0F0,8F0F0,8F0F0, &F0F0, &F0F0, &F0F0, &F0F0, 8.F0F0
DATA &F0F0,8.F0F0,8.F0F0,8.F0F0,8.F0F0,8.F0F0, 8F0F0, &F0F0
DATA 8AAAA, 8FBFB, &0A0A, 8.FBFB, 8.AAAA, &BFBF, 8.A0A0,8.BFBF
DATA 8.AAAA, &FBFB, 8.0A0A, 8FBFB,8AAAA,8BFBF, 8.A0A0,8.BFBF
DATA 8.4242,8.1818,8.4242,8.1818, 84242,8.1818,8.4242, 81818
DATA 8.4242,8.1818,8.4242,8.1818,8.4242, 8.1818,84242,8.1818
DIM CX(15.12)
FOR JX-1 TO 12
FOR IX-0 TO 15
READ CX(IX.JX)
NEXT IX

NEXT JX
REM brush data
DATA &3C, 8.7E, 8FF, 8.FF, &FF, 8FF, 87E, &3C
DATA 800,8.18, 83C, 87E, 87E, 83C, 8.18,8.00
DATA 800,800,800,818,818,800,800,800
DATA 810,844,802,8,90,8.01,848,8,01, 824
DATA 800,87E, 87E, 87E, &7E, &7E, 87E,800
DATA 8FF,8FF,8FF,8FF,8FF,8FF,8FF,8FF
DIM BX(7,6)
FOR JX-1 TO 6
FOR IX=0 TO 7
READ BX(IX,J%)

NEXT IX
NEXT JX
XX=530:Y%=200
DIM TX(15)
TX(0)=1
FOR IX=1 TO 14
TX(IX)=TX(IX-1)*2
NEXT IX
TX(15)=88000
REM FUNCTION SHAPES
DATA 838,838,838,838,8FE,8AA,8AA,8AA
DATA 800,80F,813,825,84A,&F4,898,8F0

110 Freestyle graphics - painting

1930 DATA &0E, All, A22, A44.A88.AF0, AE0, &80
1940 DATA 8.00,8.00, AFF, AC3, AC3, AC3, &FF, 8.00
1945 DATA &38, &38, &3C, 8.6,8.3, AFF, A81, AFF
1950 DIM FX(7,5)
I960 FOR JX=1 TO 5
1970 FOR IX-0 TO 7
1980 READ FX(IX.JX)
1990 NEXT IX
1995 NEXT JX
1999 RETURN
2000 REM get key
2020 DXX-0:DYX-0
2030 IF INKEY(0)=0 THEN DYX-2
2040 IF INKEY(2)=0 THEN DYX=-2
2050 IF INKEY(1)=0 THEN DXX=1
2060 IF INKEY(8)-0 THEN DXX--1
2070 IF INKEY(9)=0 THEN DX=NOT DX
2080 IF INKEY(3)-0 THEN DXX=DXX*8:DYX-DYX*8
2090 IF INKEY(10)=0 THEN MX--1
2999 RETURN
3000 AX-(XX MOD 16)
3010 BX-CYX2) MOD 16
3020 PRINT CHRS(25)>CHRS(240);
3030 FOR IX-7 TO 0 STEP -1
3040 MX-CX((BX+IX) MOD 16,PX)
3050 IFAX>0 THEN GOSUB 3500: REM ROTATE LEFT AX TIMES
3060 MX-MX AND BX(7-IX,SX)
3070 PRINT CHRS(MX);
3080 NEXT IX
3099 RETURN
3500 MS-BINS(MX,16)
3510 MS=”AX”+RIGHTS(MS,16-AX)+LEFTS(MS,AX)
3520 MX-VAL(MS)
3999 RETURN
4000 REM draw char
4010 PRINT CHRS(23);CHRS(1);
4020 TAG
4030 MOVE XX,YX
4040 PRINT CHRS(240);
4044 TAGOFF
4045 IF DX THEN PRINT CHRS(23);CHRS(3);:MOVE XX,YX:

TAG:PRINT CHRS(240)TAGOFF
4050 XX-XX+DXX
4060 YX-YX+DYX
4065 PRINT CHRS(23)SCHRS(l);
4070 MOVE XX,YX
4074 GOSUB 3000

An interactive painting program - AMART 111

¿1075 TAG
¿1080 PRINT CHR$(2*10);
¿1090 TAGOFF
¿1100 RETURN
¿1200 REM BOX
¿1210 PRINT CHR$ (23) • CHR$ (1) ;
¿¿215 MOVE XX, YX
¿1216 TAG:PRINT CHR$ (2*10);: TAGOFF
¿1217 XX=XX+DXX:YX=YX+DYX
¿1220 MOVE X2X,Y2X:DRAW XX.Y2X:DRAW XX,YX-16:

DRAW X2X,YX-16:DRAW X2X.Y2X
¿1270 PRINT CHR$ (25) ; CHR$ (2*10) ;
¿1280 FOR IX=0 TO 7
¡1290 PRINT CHR$(FX(IX,FX)):
¿¿300 NEXT IX
¿¿310 IF DX THEN PRINT CHR$ (23) ; CHR$ (3) ; : MX = -1
¿¿320 MOVE X2X,Y2X:DRAW XX,Y2X:DRAW XX,YX-16:

DRAW X2X,YX-16:DRAW X2X.Y2X
¿1330 PRINT CHR$ (23) ! CHR$ (1) ;
¡13*10 MOVE XX, YX
¡¿3*15 TAG: PRINT CHR$ (2*10);: TAGOFF
¿¿350 IF MX THEN X2X=XX: Y2X=YX-16: MX=0
¿¿360 DX-0
¡1370 RETURN
¿1500 REM CONTROL
¡¿505 MOVE XX, YX
¡1510 TAG: PRINT CHR$ (2*10);: TAGOFF
¿1520 SYMBOL 2*10, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
¿1525 PRINT CHR$ (23) J CHR$ (1) ;
¡1530 XX=XX+DXX
¡15*10 YX = YX+DYX
¿15*15 MOVE XX, YX
¿1550 TAG: PRINT CHR$ (2*10);: TAGOFF
¿155*1 DX=0
¿1555 IF INKEY(9)<>0 THEN RETURN
¿1560 IF YX>-280 THEN GOSUB 7000: RETURN
¡1570 IF YX>=192 THEN GOSUB 7100: RETURN
¿1580 IF YX>=128 THEN GOSUB 6000: RETURN
¿1590 IF YX>=6*1 THEN GOSUB 6100: RETURN
¿1595 RETURN
¿1600 REM FILL ROLLER
¿1610 PRINT CHR$(23) ;CHR$(1) ;
¿1620 MOVE XX, YX
¿1630 TAG: PRINT CHR$ (2*10);: TAGOFF
¿16*10 XX=XX+DXX
¿1650 YX=YX+DYX
¿1655 IF DX THEN GOSUB 7500
¿1660 PRINT CHR$ (25) 1 CHR$ (2*10) ;

112 Freestyle graphics - painting

4670 FOR IX=0 TO 7
4680 PRINT CHR$(FX(IX,FX));
4690 NEXT IX
4700 MOVE XX,YX
4710 TAG:PRINT CHR$(240);:TAGOFF
4730 DX=0
4740 RETURN
4800 REM RUBBER
4810 PRINT CHR$(23);CHR$(1);
4820 MOVE XX,YX
4830 TAG:PRINT CHR$(240);:TAGOFF
4840 XX-XX+DXX
4850 YX-YX+DYX
4855 PRINT CHR$(25)!CHR$(240);
4856 FOR IX=0 TO 7
4857 PRINT CHR$(FX(IX,FX));
4858 NEXT IX
4859 IF DX THEN PRINT CHR$(23);CHR$(0);:TAG:

MOVE XX,YXSPRINT CHR$(32);:TAGOFF
4860 PRINT CHR$(23)JCHR$(1)5
4865 MOVE XX, YX
4870 TAG:PRINT CHR$(240);:TAGOFF
4880 DX-0
4890 RETURN
4900 REM PENCIL
4910 PRINT CHR$(23)!CHR$(1) ;
4911 MOVE XX, YX
4912 TAG:PRINT CHR$(240);:TAGOFF
4913 XX-XX+DXX:YX-YX+DYX
4915 MOVE X2X,Y2X:DRAW XX.YX-16
4936 PRINT CHR$(25);CHR$(240) :
4937 FOR IX=0 TO 7
4938 PRINT CHR$(FX(IX,FX));
4939 NEXT IX
4940 IF DX THEN PRINT CHR$(23)5CHR$(3)S:MX=-1
4944 MOVE X2X.Y2X
4945 DRAW XX.YX-16
4950 MOVE XX,YX
4960 PRINT CHR$(23);CHR$(1);
4970 TAG:PRINT CHR$(240);:TAGOFF
4980 IF MX THEN X2X=XX:Y2X=YX-16:MX=0
4985 DX-0
4990 RETURN
5000 REM PRINT SCREEN
5010 CLG
5020 PX-0
5030 SX=6
5110 FOR QX=1 TO 4

An interactive painting program - AMART 113

5120 FOR RX = 1 TO 3
5130 UX-65+(INT((QX-1)/6)+RX)*4
5140 VX=(QX*2)-1
5150 PX=PX+1
5160 GOSUB 3000
5170 LOCATE UX.VX
5180 PRINT CHR$(240); CHR$(240);CHR$(240);CHR$(240) ;
5190 LOCATE UX.VX+l
5200 PRINT CHR$(240); CHR$(240);CHR$(240);CHR$(240);
5210 NEXT RX
5220 NEXT QX
5240 ORIGIN 0,0
5250 MOVE 544,400
5260 DRAWR 0,-400
5270 MOVE 576.400
5280 DRAWR 0,-128
5290 MOVE 607,400
5300 DRAWR 0,-128
5310 FOR QX=400 TO 32 STEP -32
5320 MOVE 544,QX
5330 DRAWR 96,0
5340 NEXT QX
5350 MOVE 592,272
5360 DRAWR 0,-96
5370 MOVE 551.264
5380 TAG:PRINT "SAVE" ; :TAGOFF
5390 MOVE 598,264
5400 TAG:PRINT "LOAD" ; :TAGOFF
5410 MOVE 549.232
5420 TAG:PRINT "PRINT "; :TAGOFF
5430 MOVE 600,232
5440 TAG:PRINT "CLS"; :TAGOFF
5450 MOVE 549,200
5460 TAG:PRINT "QUIT" ; :TAGOFF
5500 MOVE 576,176
5510 DRAW 576,48
5520 MOVE 607,176
5530 DRAW 607,48
5600 FOR BX-1 TO 6
5610 PRINT CHR$(25) i CHR$(240);
5620 FOR IX=0 TO 7
5630 PRINT CHR$(BX(IX,BX));
5640 NEXT IX
5650 IF BX<4 THEN MOVE 525+32*BX,168 ELSE

MOVE 525+32*(BX-3),136
5670 TAG:PRINT CHR$(240); :TAGOFF
5680 NEXT BX
5685 FOR FX=1 TO 5
5686 PRINT CHR$(25); CHR$(240);
5687 FOR IX=0 TO 7
5688 PRINT CHR$(FX(IX,FX));

114 Freestyle graphics - painting

5690
5700
5710
5720
5900
5910
5920
5925
5930
5935
5936
5937
5940
5950
5960
5999
6000
6010
6020
6030
6040
6100
6110
6120
6130
6140
6500
6510
6520
6530
6540
6550
6600
6610
6620
6630
6640
6650
7000
7010
7020

NEXT 1%
IF FX<4 THEN MOVE 525+32*FX, 104 ELSE
MOVE 525+32*(FX-3).72
TAG:PRINT CHRS(240);:TAGOFF
NEXT FX
PX=1
GOSUB 8000
PRINT CHRS(23)SCHRS(1);
SYMBOL 240,&FF,&FF,&FF,&FF,&FF,&FF, &FF, &FF
SX=1
GOSUB 6500
FX=1
GOSUB 6600
GOSUB 3000
MOVE XX, YX
TAG:PRINT CHRS(240);:TAGOFF
RETURN
REM change brush
GOSUB 6500
SX-(XX+3)32-16+((407-YX)32-7)*3
GOSUB 6500
RETURN
REM CHANGE FUNCTION
GOSUB 6600
FX=(XX+3)32-16+((407-YX)32-9)*3
GOSUB 6600
RETURN
REM MARK SELECTED BRUSH
IF SX<4 THEN MOVE 512+32*SX.176 ELSE
MOVE 512+32*(SX-3),144
TAG:PRINT STRINGS(4,CHRS(240));:TAGOFF
IF SX<4 THEN MOVE 512+32*SX,160 ELSE
MOVE 512+32*(SX-3).128
TAG:PRINT STRINGS(4,CHRS(240));:TAGOFF
RETURN
REM MARK SELECTED FUNCTION
IF FX<4 THEN MOVE 512+32*FX,112 ELSE
MOVE 512+32*(FX-3).80
TAG:PRINT STRINGS(4,CHRS(240));:TAGOFF
IF FX<4 THEN MOVE 512+32*FX,96 ELSE
MOVE 512+32*(FX-3),64
TAG:PRINT STRINGS(4,CHRS(240));:TAGOFF
RETURN
REM change pattern
GOSUB 8000
PX=(XX+3)32-16+((407-YX)32)*3

An interactive painting program - AMART 115

7030 GOSUB 8000
70/10 SYMBOL 240, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
7050 RETURN
7100 REM COMMANDS
7110 CX-(636-XX)48+((407-Y%)32-4)*2
7120 IF CX-0 THEN GOSUB 9000:REM LOAD
7130 IF CX-1 THEN GOSUB 9100:REM SAVE
7140 IF CX-2 THEN GOSUB 9200:REM CLS
7150 IF CX-3 THEN GOSUB 9300:REM PRINT
7160 IF CX-5 THEN GOSUB 9400:REM QUIT
7170 RETURN
7500 REM FILL AREA WITH CURRENT PATTERN
7505 XX-XX+4:YX-YX-16
7510 XTX-XX:YTX-YX
7520 WHILE YTX>-0 AND TEST(XTX,YTX)-0
7530 GOSUB 7900
7540 XTX-XTX-1
7550 GOSUB 7800
7560 YTX-YTX-2:XTX-XX
7570 WEND
7580 XTX-XX:YTX-YX+2
7590 WHILE YTX<-399 AND TEST(XTX,YTX)=0
7600 GOSUB 7900
7610 XTX-XTX-1
7620 GOSUB 7800
7630 YTX-YTX+2:XTX-XX
7640 WEND
7645 XX-XX-4:YX-YX+16
7650 RETURN
7800 REM SCAN LEFT AND FILL
7810 WHILE XTX>-0 AND TEST(XTX,YTX)=0
7820 AX-XTX MOD 16:BX=(YTX2+1) MOD 16
7830 IF CX(BX, PX) AND TX(15-AX) THEN PLOT XTX,YTX, 1
7840 XTX-XTX-1
7850 WEND
7860 RETURN
7900 REM SCAN RIGHT
7910 WHILE XTX<536 AND TEST(XTX,YTX)=0
7920 XTX-XTX+1
7930 WEND
7999 RETURN
8000 REM current pattern
8005 XTX-XX:YTX-YX:STX-SX:SX-6
8010 FOR XX-560 TO 631 STEP 8
8020 FOR YX-23 TO 40 STEP 16
8030 MOVE XX,YX

116 Freestyle graphics - painting

8035
8040
8050
8060
8070
8080
8090
8100
9000
9010
9015
9020
9030
9040
9050
9060
9100
9110
9120
9125
9126
9127
9130
9135
9140
9145
9150
9160
9170
9180
9200
9205
9210
9220
9230
9240
9250
9260
9270
9300
9310
9320
9330
9340
9400
9410

GOSUB 3000
TAG:PRINT CHR$(240);:TAGOFF

NEXT YX
NEXT XX
MOVE 544,48
DRAWR 0,-48
XX-XTX:YX=YTX:SX=STX
RETURN
LOAD ”!PIC”
GOSUB 8000
MOVE XX,YX
SYMBOL 240,&FF,&FF,&FF,&FF,&FF,&FF.&FF,&FF
TAG:PRINT CHR$(240);:TAGOFF
GOSUB 6500
GOSUB 6600
RETURN
SPEED WRITE 1
MOVE XX,YX
TAG:PRINT CHR$(240);:TAGOFF
GOSUB 6500
GOSUB 6600
GOSUB 8000
SAVE ’’! PIC” , B, 49152,16384
GOSUB 8000
MOVE XX,YX
SYMBOL 240, &FF,&FF,&FF,&FF,&FF.&FF,&FF,&FF
TAG:PRINT CHR$(240TAGOFF
GOSUB 6500
GOSUB 6600
RETURN
PRINT CHR$(23);CHR$(0);
LOCATE 1,1
PEN 0
FOR IX=1 TO 25
PRINT STRING*(68,CHR$(143)) ;

NEXT IX
PEN 1
PRINT CHR$(23);CHR$(1) ;
RETURN
REM PRINTER DUMP
REM ***********$*****************************
REM INSERT YOUR OWN PRINTER DUMP ROUTINE HERE
RETURN
QUITX—1
RETURN

An interactive painting program - AMART 117

How Amart works
If you are only interested in using AMART as an example of the
techniques described in the previous section then you can feel
free to skip this explanation of its inner workings. As AMART is
such a long program there is no way of giving a full explanation in
a reasonable amount of space, and indeed much of it is obvious
enough not to need explanation. An overall view of the structure
of the program can be seen from its subroutine table given below.

Subroutine Use - AMART
Subroutine
500

function
Selects subroutine to implement currently selected
function

1000 Initialisation - sets up arrays, containing data that
define patterns, brush shapes and icons

2000 Reads cursor keys, COPY, F9 and F7 and sets
variables accordingly - replace this routine if you
want to use another input device

3000 Defines character 240 to be current pattern appro
priate for the present position of the graphics
cursor

3500
4000
4200
4500

Shifts bit pattern in M% A % bits to the left
Implements paint brush
Implements rubber band rectangle
Control routine - if graphics cursor is in the menu
area this subroutine prints the control cursor and
tests for the COPY key. If the COPY key is pressed
it calls an appropriate subroutine to implement the
selection

4600 Scan fill routine - if COPY key has been pressed it
calls subroutine 7500 to do the fill

4800 Erase routine - uses the eraser character to set
pixels to the background colour if the COPY key is
pressed

4900
5000
6000
6100
6500

Implements rubber band pencil
Prints initial screen including menu
Changes brush - S% is the brush number
Changes function - F% is function number
Changes the selected brush's menu box to inverse
colours

6600 Changes the selected function's menu box to in
verse colours

7000
7100

Changes current pattern - P% is pattern number
Calls subroutine to carry out one of the 'word'
commands - SAVE, LOAD etc

118 Freestyle graphics - painting

7500 Scan fills an area with the current pattern
7800 Scans left and fills
7900 Scans right
8000 Prints current pattern at bottom of menu column
9000 Loads picture
9100 Saves picture
9200 Clears the screen
9300 Printer dump - insert your own printer dump

subroutine or machine code call here
9400 Quits program

The main program takes the form of a WHILE loop that re
peatedly calls subroutine 1000 to update the cursor position and
read the other keys, and subroutine 500 to implement the
currently selected function. Most of the subroutines work in a
fairly obvious way if you consider what they have to do and recall
the explanations given earlier. However there are one or two
features of the program that deserve further comment.

One of the main features is the provision of a range of patterns.
Each pattern is defined in squares 16 pixels by 16 pixels. The
DATA statements, line 1080 to 1310 define the twelve different
patterns shown in the menu. Each pair of DATA statements
defines 16 rows of 16 dots in much the same way that a SYMBOL
statement defines 8 rows of eight dots for a standard size
character. So for example DATA statements 1080 and 1090 define
the first pattern in the top left of the menu. All of the pattern data
is read into the array C%, in such a way that C%(R%,P%)
contains the definition of row R% for pattern P%. The brush
shapes are defined in the same way but only as 8 by 8 pixels in
size by DATA statements 1600 to 1650. The brush definitions are
stored in the array B% in such a way that B%(R%,S%) contains
the definition of row R% for brush S%. Finally, the icons used for
the functions are defined as 8 by 8 characters by DATA state
ments 1910 to 1945. The icon definitions are stored in the array
F% in such a way that F%(R%,F%) contains the definition of row
R% for icon F%.

The way that the pattern brush is implemented is a little
difficult to explain as it involves bit manipulation, but essentially
it works by taking account of the symmetry inherent in the
pattern. The fundamental idea is that before the brush character,
CHR$(240), is printed subroutine 3000 is called to set up its
definition depending on the current cursor position, the current
pattern and the currently selected brush shape. It does this by
ANDing each row of the brush definition with an appropriate row
from the pattern definition. As the pattern repeats in square 16 by

An interactive painting program - AMART 119

Fig. 5.5 AMART - sample picture 1

16 pixel blocks, the brush is either completely within one of these
block or it overlaps as many as four of them. If the brush is
completely within a block then the pattern that it should produce
on the screen can be found from the block as it is defined by the
DATA statements in subroutine 1000. If the brush overlaps more
than one block then the pattern defined by the DATA statements
has to be shifted, horizontally and vertically, to give the pattern to
be found in a 16 by 16 block that does completely contain the
brush. Subroutine 3500 is interesting in that it performs a left
rotation of the bit pattern stored in M% by A% bits. This is
achieved by converting the number in M% to a string of ones and
zeros using BINS and then uses string operations to implement
the rotate.

The only other routine that uses the pattern definition is the
scan fill subroutine at 7500. This follows the method used by the
scan fill routine introduced earlier, with the exception of lines
7820 and 7830. Line 7820 works out the row of the pattern and the
bit within the pattern corresponding to the point that is about to
be plotted - if this is a 1 then the point should be plotted; if it is a 0
the point should not be plotted. The only difficult part is finding
out quickly the state of a given bit in a number. This is achieved
using a set of binary masks stored in the array T%. Subroutine
1000 initialises T% so that the value in T%(I%) is 2AI%, so

120 Freestyle grapics - painting

Fig 5.6 AMART - sample picture 2

T%(0) = l, T%(1)=2, T%(2)=4 and so on. The result of ANDing a
value with T%(I%) is equal to the Ith bit in the value. For example
5 AND T%(0) is 1 and 5 AND T%(1) is 0 (5=101 in binary).

There are numerous other points of special interest, far too
many to go into in detail, but notice the way that the menu
selection subroutine use a calculation to find out in which menu
box the graphics cursor is positioned (lines 6020, 6120 and 7020).
The most obvious way of doing this job is with a long list of IF
statements, each one testing for the graphics cursor being
positioned over a particular box - the equation method is much
easier!

There are many additions and improvements that can be made
to AMART and one way to discover how any program works is to
modify it. For example you might like to add a rubber band circle
drawing routine and a text entry routine so that you can label
your drawings. Whether or not you modify it, however, you can
have hours of enjoyment drawing pictures with it. The two
examples shown in figs 5.5 and 5.6 should give you an idea of the
results that can be achieved.

A graphics editor 6

Painting directly on the screen as described in Chapter Five is
great fun, but it is very difficult to draw anything exactly. If you
want to draw something like a house floor plan or an electronic
circuit diagram then 'painting' isn't really the right approach.
What is needed is some method that gives more accurate control
over where to place objects on the screen.

In the same way that the painting program given in the
previous chapter was developed by considering ways of
computerising the traditional artistic methods it is possible to
develop a computerised 'technical drawing board'. Although
technical drawing sounds very dull and uninteresting it is the
only sensible approach to producing an accurate representation of
something. As you might expect, producing a software technical
drawing board uses co-ordinate based graphics to enable accurate
positioning of objects and so this chapter could just as easily have
been called 'co-ordinate based graphics'. Some co-ordinate based
methods have been introduced in Chapter Four and in this
chapter these are extended to include everything needed to
understand and use the 'graphics editor' program given at the
end of the chapter.

Points, lines and polygons

The fundamental graphics entity is the point or pixel but, while
any shape can be considered as a collection of points, this is not a
practical way for a user to enter or modify a shape. It is fairly
obvious that any curve can be approximated by straight line
segments, the accuracy of the approximation increasing with the
number of lines used, and this suggests that a graphics package
based on nothing but straight line manipulation would be almost
as good as one that allowed the use of arbitrary curves. Once you 121

122 A graphics editor

decide to ignore general curves and use nothing but straight lines
there emerges a simple hierarchy of 'graphics objects'. The point
is, of course, still fundamental but the straight line is the element
that is used to construct closed shapes or polygons. In the same
way that a straight line is defined by the position of two points, a
polygon is defined by the position of a number of lines.

There are times when a graphics package should allow the user
to interact with individual points, individual lines or collection of
lines. For example, if you want to move the position of one end of
a line then it is natural to select the point that defines the end of
the line and move it. On the other hand if you want to move the
entire line then having to move each end point in turn many be a
little awkward!

Point and line files
Making up shapes out of a collection of lines raises the issue of
how the data that defines each line's position, orientation and
length should be stored. You could, as many graphics pro
grammers do, choose to ignore the problem and simply store the
information in any old way that occurs to you as you write the
program. However there is a great deal to be gained from
thinking out a clear and structured way of storing line data so that
it can be easily modified. The obvious way to store a collection of
points is as a pair of arrays X%(I) and Y% (I) used to hold the x
and y co-ordinates of each point. This method of holding points is
known as a 'point file' and it has the advantage that the index of
the arrays also serves to identify each point and thus makes
editing possible.

The most obvious way to define a line segment is to give the
location of its starting point and its end point. You might think
that this implies that the best way to store line information is in
four arrays used to store the two pairs of co-ordinates of the
starting and finishing points respectively. However, as lines that
make up a single shape tend to share start and endpoints it is
better to store the co-ordinates of the points in a point file and use
the point indices to specify pairs of points. For example, a square
would be stored as

X%(I)
0
1

Y%(I)
0
0

S%(I)
1
2
3
4

E%(I)
2
3
4
1

1
0

1
1

Points, lines and polygons 123

The two arrays X%(I) and Y%(I) store the co-ordinates of four
points 0,0 1,0 1,1 and 0,1, which are the four corners of a square.
The two arrays S%(I) and E%(I) store the start and end points of
four lines. For example, the first line starts at point 1 and ends at
point 2. In other words, the line is between X% (S% (1)), Y% (S% (1))
and X%(E%(1)), Y%(E%(1)). In general, the Ith line is drawn
between X%(S%(I)), Y%(S%(I)) and X%(E%(I)), Y%(E%(I)).

This is not the only way to store a list of lines that make up a
display but it has many advantages that become clear only when
you try to change the arrangement of lines, so as to make a shape
bigger or change its orientation.

Entering graphics data

Now that the method of storing point and line information has
been decided it is easy to see how, given the arrays X%,Y%,S%
and E%, to draw the scene that they describe. What is not so easy
is to suggest a suitable way of getting the information into the
arrays in the first place or how to change the information
interactively. As in the case of computer-assisted art, a technical
graphics system should be as easy to use as the traditional
technology of pencil, paper, drawing board and set square. In fact
to be worthy of replacing the traditional materials it has to be in
some way better. Of course even a badly designed graphics
system offers certain advantages over pencil and paper just
because a computer is involved, but this is not a reason for
avoiding the problems of designing a good input and editing
method.

The method used to input graphics data is obviously depen
dent on the hardware available. Technical graphics makes the
same demands on an input device that artistic graphics makes. It
must be quick, easy and natural to use, but in addition it must be
accurate. A technical graphics input device must allow the user to
set the position of a point to within one pixel without any
difficulty. Most of the input devices discussed in the previous
chapter, the light pen, the joystick and the mouse, are also
suitable for technical graphics if they are of a sufficiently high
quality. However, such devices are always used to control the
position of a graphics cursor, and so, to avoid the need for special
hardware, the program developed in this chapter uses the cursor
keys in much the same way as the painting program in the
previous chapter.

Once again keyboard positioning has to be both accurate and
fast and the best solution to this problem has already been

124 A graphics editor

described - the addition of a fifth key (F9 or 9 on the numeric
keypad) to the usual four cursor keys to control the speed of
movement. Pressing one of the directions keys on their own
should move the cursor by the smallest increment that the
graphics display can resolve - so allowing accurate positioning,
but pressing one of the directions keys at the same time as the
'speed' key should move the cursor by a much larger increment.
As the program is intended to be used for accurate input the
choice of increments is important. For example even though
changing the Y co-ordinate by one doesn't always move the
graphic cursor on to a new pixel it is often necessary to input
graphics data more accurately than it can be displayed. For this
reason the graphics editor program allows the user to move the
graphics cursor by one unit in both the X and Y directions by
pressing the appropriate cursor keys. The 'speed up' factor is
chosen to produce an increment of 10 units in both directions. As
the current X and Y co-ordinates of the graphics cursor are
displayed at the bottom right hand side of the screen (see fig 6.1)
this makes setting an exact position easy. Notice that using this
system more than one arrow key can be used at a time. For
example to move the cursor diagonally up the screen and to the
left at great speed all you have to do is press the up and left arrow
key while holding down the F9 key.

Point

Line

Fig 6.1 Bridge rectifier circuit drawn using AMPLOT

Draw

Move

File

Object

Erase

Window
Quit

176
ï= 104

Entering graphics data 125

Using the keyboard to control the position of a graphics cursor
it is now easy to see how to input single points. The graphics
cursor can be moved to the desired location and then pressing
another key, 'P' say, its current co-ordinates would be stored in
the appropriate location in the point file, that is the arrays X%
and Y%. If P% is used to record the number of points already
entered and the graphics cursor position is stored in XG% and
YG% then entering a point is simply

P%=P%+1
X%(P%)=XG%
Y%(P%)=YG%
PLOT XG%,YG%

where the plot is included to show the user that the point has
indeed been added to the drawing.

The next problem is to find a way of storing line data in S% and
E%. The restriction that lines can only be specified between
points that have already been defined makes this task much
easier. A point already on the screen can be specified using 'cyclic
selection'. When the user wants to input a line the graphics cursor
can be automatically positioned at one of the points on the screen.
If this is one of the two- points that determine the line then the
user can simply press a key to indicate that this is the case. On the
other hand, if it is not, pressing another key makes the graphics
cursor move on to the next point. In this way the user can make
the graphics cursor 'cycle' through all of the points on the screen
until the one required is located. Cyclic selection does have a
number of disadvantages which will be discussed later but it is
simple and surprisingly pleasant to use. When a point has been
selected as the start of a line then its number is stored in S%.
Similarly if it is selected as an endpoint its number is stored in
E%.

Editing graphics data - rubber banding
Now that a method for entering both points and lines has been
described the next problem is editing. Removing existing points
and lines is not difficult and involves no new ideas, however it is
best dealt with later in this chapter, after the introduction of
'objects'. The most important advantage of computer graphics is
that it gives (or should give) the user the opportunity to modify a
drawing by moving points interactively. For example if you have
drawn a square by defining four points and then joining them by
four lines it should be possible to 'move' two of the points to turn
it into a rectangle. This sort of editing is easy enough to imple-

126 A graphics editor

merit. The point to be moved can be determined by cyclic
selection and then moved using the arrow keys in the usual way.

The straightforward method of moving a point with the
graphics cursor gives very little feedback to the user about how
the modified drawing looks. The obvious solution to this problem
is to redraw all of the lines to the point being moved, each time it
is moved. This gives the user the impression that the lines
connected to the point are in some sense 'elastic' and can be
stretched or shortened at will. You should be able to recognise
this as another application of the 'rubber banding' method
introduced in Chapter Five. However this form of rubber banding
is a little more complicated in that the number of lines connected
to the moving point is variable.

Implementing a rubber banding point move option in the
graphics editor is a little more complicated than you might expect,
if a reasonable response time is to be maintained. The most
obvious method of redrawing the lines connected to a point is to
redraw all of the lines that make up the display. This is indeed
easy but it is not difficult to appreciate that it quickly becomes
unacceptably slow as the number of lines increases. Redrawing
only the lines that are connected to the point being moved is
clearly the correct way to implement rubber banding. However
this involves scanning through the line endpoint arrays S% and
E% to find out which lines are connected to the point in question
and this takes time. To avoid slowing things down, a list of lines
connected to the point has to be constructed just once and then
re-used each time the point is moved. The best time to construct
this list is when the point is being selected. That is, the cyclic
selection routine should return a list of lines connected to the
point that is being selected. The list can then be used by the point
move routine to erase and redraw all of the lines each time the
point is moved.

Objects

Initially, it is sufficient to enter and manipulate individual points
and lines, but as the complexity of a drawing increases it becomes
desirable to work in terms of discrete collections of lines - that is
'objects'. For example, if you are building up a simple circuit
diagram such as that shown in fig 6.2, at first you will want to
manipulate individual points to alter the shape of the triangular
elements but later it becomes a difficult chore to have to move an
entire triangle by moving each of its points independently. What
is required is some method of defining 'objects', as collections of

Objects 127

particular lines, and performing operations on these objects.
The most logical way of adding objects and object operations to

a graphics editor is to introduce an 'object file' that lists the line
numbers of the lines that make up each object. That is, each
element of the object file would be a list of all the line numbers
that define the object. Unfortunately, unlike the point and line
files already described, each element of an object file would have
to be capable of storing a variable number of line numbers. For
example, object number 1 might be a triangle which needs three
line numbers stored, but object number 2 might be a square
needing four line numbers to define it. BASIC doesn't really
provide any simple way of constructing such variable length lists
- it can be done, but not easily. A suitable compromise is to use
an array O% to store the object number of each line. That is line
1% belongs to object number O%(I%). This restricts each line to
belonging to just one object but this proves not to be too
important in practice. Using this system, drawing a given object is
simply a matter of scanning through the entire line file and
drawing only the lines with the appropriate object number. That
is to draw object OB%

FOR I% = 1 TO L%
IF O%(I%)=OB% THEN draw line 1%
NEXT 1%

Point

Line

Draw

Nove

File

Object

Erase

Window

fiuit

Fig 6.2 Circuit diagram using prototypes
X= 140
V: 140

128 A graphics editor

However, as in the case of rubber banding, it is better to construct
a list of the lines that make up the object and then use this list to
draw the lines.

In AMPLOT, the graphics editor program given later, objects
are identified by numbers starting from 0. Each line in the line file
can belong to one and only one object. Although points are not
assigned to objects it is useful to consider a point as belonging to
an object if it is one of the endpoints of a line that belongs to the
object. One problem with this simple definition is that, as a point
can be an endpoint of a number of lines, it can also belong to more
than one object! However, for the moment this complication will
be ignored by supposing that all lines with the same endpoint
belong to the same object. When lines are entered, the object
number that they are assigned depends on where they are drawn.
If a line is drawn between two points that 'belong' to an existing
object then the line is given the same object number - that is it is
appended to that object. If the line is drawn between two points
that belong to different objects then it is assigned to object
number 0. Object number 0 is very special in that when a drawing
is first started there are no other objects defined and so all the
lines that are entered are automatically assigned to object zero.
Other objects can be created by using the 'object create' option
which allows the user to indicate, using cyclic selection, the lines
in object 0 that are to be grouped together under a new object
number. These new object numbers are assigned sequentially
starting with object 1.

These rules for creating objects may sound complicated but
they do provide a natural way of working. Initially, lines that are
entered are assigned to object 0 which can be thought of as a
'background' object, containing not only lines that are destined to
become new objects but also lines that connect points in different
objects. New objects are created by selecting lines from object 0,
because lines that are already assigned another object cannot be
reassigned. (It would be possible to include an option for re
assigning lines but in practice it is not very useful). After an object
has been defined, the only way that new lines can be added to it is
by drawing between points that belong to it.

Object cycling and erasing lines
The idea of cycling through all of the points in the point file was
introduced earlier as a simple way of allowing the user to select an
existing position within the drawing. In the same way you can
use line cycling to determine which line will be involved in a line
operation and object cycling to determine which object will be
involved in an object operation. However, if for example the

Objects 129

point file reaches any appreciable size, simple point cycling
quickly becomes very tedious because of the number of points
that have to be cycled though to read the one you want. The best
approach to selection is to use hierarchical cycling or simply
'object cycling' for every selection task. For example, to select a
line the program should allow the user to cycle around from
object to object until the object that contains the desired line is
reached. Then the program should allow the user to cycle around
the lines within the object to determine exactly which line is
required. The same principle applies to selecting a point - first
select an object, then the point within the object. In other words,
all cycling should be within the current object and there should be
an additional command to change the current object.

Object cycling brings one difficulty with it. All the lines in the
line file are assigned to an object and so it is possible to reach any
line by first cycling through objects and then through lines that
belong to that object. However this is not the case for all points
because it is possible to have a point that is not an endpoint for
any line and so not part of any object. To solve this problem the
definition of object 0 has to be extended to include all isolated
points. Thus cycling through the points in object zero provides
access to points that would otherwise be inaccessible.

As an example of object selection and the general difficulties in
doing the book keeping necessary to keep track of object defini
tions, consider the problem of deleting a line from a drawing.
Object cycling should first be used to locate the required line.
Deleting the line from the line file is quite easy. For example, if
you want to delete line D% all you have to do is move all the lines
below it in the line file up by one place and subtract one from L%.
To keep the object file correct, it too has to be 'moved up' in the
same way. There is one subtle complication of deleting lines in
this way that has to be taken into account. If all of the lines that go
to a particular point are deleted then it makes sense to delete that
point from the line file as well. However deleting a point from the
line file is much more complicated than you might think. As well
as moving all the points below the one to be deleted up by one
place, it also involves correcting the line file for the changes in the
point numbers! All-in-all deleting lines is a complex process!

Dragging
Objects only become useful once suitable object operations have
been defined. At this stage there is only one obvious object
operation - 'dragging'. Dragging is the object equivalent of rubber
banding. An object is selected, using cyclic selection between

130 A graphics editor

objects, and then moved as an entire entity using the cursor keys.
Implementing object dragging is nothing more than a matter of

keeping track of all the lines and points that make up the object
that has been selected. Notice that it is necessary not only to keep
a list of the lines that make up an object so that it can be drawn, it
is also necessary to keep a list of all the points that are used to
define the lines so that their positions can be changed as the
object is dragged.

Object transformations
As a drawing is built up the emphasis shifts from the more
fundamental points and lines to the manipulation of objects. The
reason for this is simply that it is easier to construct an image
using a set of standard objects rather than draw everything using
points and lines. Ideally the construction of an image should
involve nothing but the manipulation of standard, predefined
objects. To be able to do this we need ways of changing the
position, orientation and size of shapes so that they can be
combined to make a complete display.

Changes in position, orientation and size are usually referred to
as 'transformations'. For example, a landscape might use a
number of tree shapes, identical apart from position, size and
orientation, and rather than store the line information for each it
is better to keep one 'prototype' shape and generate all of the
'examples' of it using appropriate transformations.

One of the many advantages of storing point and line data
separately is that a shape can be transformed by applying the
transformation to each of its points in turn and then drawing the
straight lines that connect them. For example, if a square is
defined by four points and the lines that connect them, a
transformation that shifts the four points an equal amount to the
left will be effective in shifting the entire square if the lines are
redrawn between the same points in their new position. This
simple observation means that we need only involve the point file
in transformations. Notice that this simplification is only true if
the points are connected by straight lines - the transformation of
other connecting curves involves applying the transformation to
each point on the curve, not just its endpoints.

The next question is what sort of transformations on points are
we interested in? If we restrict ourselves to transformations that
preserve shape (on the grounds that shape is something defined
before the transformation part of a graphics program) then the
only transformations permitted (i.e. shape preserving) are

Objects 131

translation

rotation

reflection

and scaling (change of size)

As reflection is not something that we are generally interested in
this leaves only translation, scaling and rotation to be considered.
Each of these transformations can be produced using simple
equations tht convert a point's old co-ordinates to a new pair of
co-ordinates. For example to translate a point by an amount a in
the x direction and b in the y direction the equations

x' = x + a
y' = y + b

can be used, giving the new position of the point x',y' in terms of
its original position x,y. To move an entire object all you do is
apply the pair of transformation equations to every point in the
point file that is part of the object and then redraw the object's
lines. Of course this is exactly what happens during an object
drag - see the previous section. For translation, the pair of
equations defining the transformation are both simple and
obvious and this might make you think that all this theory is
unnecessary, but when it comes to scaling and rotation things are
more complicated and here the theory is a very definite help.

The equations for the scaling transformation looks deceptively
simple

x' = y sx
y' = y sy

where sx and sy are 'scaling factors' that govern how much the
object will grow in the x and y directions respectively. If this pair
of equations is applied to each point that makes up an object then
the object will appear to have been stretched by a factor sx in
width and a factor sy in height. Normally we are interested in
keeping the shape of an object constant and to ensure this sx and
sy must be identical. If this is the case then the scaling transfor
mation can be used to adjust the size of an object.

A rotation is the most complicated of the transformations but
we have already met the ideas needed in Chapter Four, when
drawing a circle. First, it is important to notice that there are two

132 A graphics editor

parameters involved in a rotation, the angle through which the
object is rotated and the point about which it is rotated. To
produce a rotation of an object about the origin each of the points
that make up the object have to move along a circular path
centred on the origin and with a radius equal to their distance
from the origin. Using trigonometry we get

x' = x cos(t) - y sin(t)
y' = x sin(t) + y cos(t)

as the equations that produce a rotation through an angle t about
the origin. Applying these equations to each point that makes up
an object will cause the entire object to move around the origin
through an angle t. Although this is indeed a rotation, it isn't
really the sort of rotation that we want. Ideally, we would like the
object to stay in roughly the same place while it rotates, so that its
orientation could be changed without affecting its position.

In the same way as the rotation transformation changes both
the position and orientation of an object, the scaling transfor
mation also has a 'side effect'. Not only does it alter the size of an
object it also shifts its position. This is because multiplying co
ordinates in this way moves every point further away from the
origin, that is the point 0,0. In fact the scaling transformation
described above is better named 'scaling about the origin' in the
same way that the rotation transformation is 'rotation about the
origin'. So, although we have equations that produce rotation and
scaling, neither transformation is exactly what we need. To
produce scaling and rotation without shifting the overall position
of the object we have to examine the way that transformations can
be combined.

Combining transformations - the centroid
The transformation equations given above are very useful, but
normally the required transformation is a combination of rotation,
translation and scaling. For example, a square in the middle of the
screen can be rotated about one of its corners by the following
three steps:

1 translating the desired corner to the origin
2 performing the rotation about the origin
3 performing the translation in step 1 in reverse

In the same way, a rotation about any point can be achieved by
first translating the point to the origin, performing a rotation
about the origin and then performing the reverse translation.

Objects 133

Applying each of the transformation equations in turn can be
shown by simple algebra to be equivalent to applying the single
transformation

x' = (x-a)cos(t) + (y-b)sin(t) + a
y' = (x-a)sin(t) + (y-b)cos(t) + b

which are the transformation equations for rotating an object
through an angle t about the point a,b.

Using the same reasoning a scaling about any point can be
produced by first applying a translation to bring the point to the
origin, then a scaling about the origin and finally a reverse
translation. Applying each of these transformations in turn is
equivalent to the single transformation

x' = sx(x-a) + a
y' = sy(y-b) + b

Now that we can both rotate and scale an object about any
point, the question is can a rotation or scaling point be found that
will result in the object staying in place while it rotates or changes
its size? The answer is yes and the point is called the 'centroid'.
The centroid is nothing more than the two-dimensional equi
valent of the familiar 'centre of gravity'. The co-ordinates of the
centroid are simply the average of the x co-ordinates of the object.
So whenever a scaling or rotation have to be performed on an
object the centroid is calculated and used in the transformation
equations given above. Using this scheme objects can be dragged,
scaled and rotated with the minimum of interactions between the
three activities.

Prototypes

Using the ability to drag, scale and rotate any object it is
surprising how easy image construction becomes. For example,
the amplifier circuit in fig 6.2 involved defining only three shapes,
the transistor symbol, the capacitor symbol and the resistor
symbol and transforming them into position. In fact, the best way
to use the graphics editor is to first define a range of basic shapes,
to form a library for later use.

To make this possible it is, of course, necessary to implement
the saving, loading and appending of drawings. If you are using
tape then this facility will not be very easy to use but if you are
using disc then it is almost as good as a memory resident library
of prototypes. For example, if you are going to use the graphics
editor to draw electronic circuits all you have to do is to define

134 A graphics editor

each of the symbols that you need and store each one in a
different file - resistor, capacitor, diode, transistor etc. Then you
can draw your circuit simply by appending each symbol that you
need and transforming it into position.

Loading and saving are simple enough to implement but
appending objects is a little tricky. The basic idea is that appended
objects are entered into the object file with an object number that
is equal to their original number plus the largest object number so
far used in the drawing to which they are being appended. For
example, if you save a single object in a file as object number 1
and then append it to a drawing with four objects already
defined, it will be entered as object number 5. An object that was
saved as object two would be appended to the same drawing as
object six.

This is fairly straightforward and trouble-free as long as objects
that are saved as object zero are treated differently. For example if
object zero were to be appended to a drawing containing four
objects according to the standard rules it would be assigned to
object four and hence attached to the existing object four. The
only sensible thing to do is to treat object zero as special and
append it to any existing object zero. So to summarise: when
appending objects, the object number to which they are assigned
is given by the sum of their original object number plus the largest
object number used in the drawing so far - apart from an object
saved as object number 0 which is appended to any existing
object zero. These rules may sound a little complicated but if you
arrange always to save prototypes with an object number of 1 you
can virtually forget them. The standard sequence of operations is
then:

1 Use the graphics editor to draw any prototype shape that is
needed. Define it as object number 1 and store it in prototype
library.
2 Recall each prototype that is needed and transform it to the
correct position and orientation within the display.
3 Finally, use the graphics editor on the nearly completed display
to draw in connecting lines etc that are not part of any prototype.
Also at this stage the editor can be used to remove unwanted lines
and generally tidy up the final display.

The graphics editor - AMPLOT

A complete listing of AMPLOT, the graphics editor, is given on
the pages following.

The graphics editor - AMPLOT 135

10
20
30
¿10
50
60
70
80
90
100
199
1000
1010
1020
1030
10/10
1050
1060
1070
1080
1090
1100
1110
1120
1199
1200
1210
1299
1300
1320
1330
1340
1350
1360
1370
1399
1/100
1420
1/130
14/10
1/150
1499
1500
1520
1530
1540

REM graphics editor
MODE 2
GOSUB 1000
WHILE QUITX-0
GOSUB 3000
GOSUB 4000
GOSUB 2500
GOSUB 3000
XGX=XX:YGX=YX

WEND
END
REM init
XGX-100:YGX-100
GOSUB 1200
GOSUB 1300
DIM XX(100) , YXU00)
DIM SX(100),EX(100)
DIM TX(100) , OX(100),QX(100),CX(100)
PX-0
CX=1
XX-XGX
YX=YGX
LX = 0
OBX=0:SX=1:OMX=1
RETURN
REM windows
WINDOW#1,70,80,1,24
RETURN
REM menul
DATA "Point","Line","Draw"
DATA "Move","File","ObJect"
DATA "Erase","Window","Quit"
RESTORE 1300
DX=9
GOSUB 2000
RETURN
REM menu2
DATA "Next obj.","Cycle","First","Second"
DX=4
RESTORE 1400
GOSUB 2000
RETURN
REM menu3
DATA "Cycle","Exit"
DX=2
RESTORE 1500

136 A graphics editor

1550 GOSUB 2000
1599 RETURN
1600 REM menu!
1620 DATA "Save","Load","Append"
1630 DX=3
16110 RESTORE 1600
1650 GOSUB 2000
1699 RETURN
1700 REM menu5
1720 DATA "Create","Drag","Transform"
1730 DX=3
1740 RESTORE 1700
1750 GOSUB 2000
1799 RETURN
1800 REM menu6
1820 DATA "Cycle","Add","Exit"
1830 DX=3
1840 RESTORE 1800
1850 GOSUB 2000
1899 RETURN
1900 REM menu7
1920 DATA "Next obd.","Cycle","Delete"."Exit"
1930 DX=4
1940 RESTORE 1900
1950 GOSUB 2000
1999 RETURN
2000 REM data
2010 CLS#1
2015 PRINT#1
2020 FOR IX=1 TO DX
2030 READ MS
2040 PRINT #1,MS
2050 PRINT #1
2060 NEXT IX
2099 RETURN
2500 REM update
2510 IX-0:JX-0
2520 IF INKEY(0)=0 THEN IX=IX+1
2530 IF INKEY(2)-0 THEN IX-IX-1
2540 IF INKEY(8)=0 THEN JX=JX-1
2550 IF INKEY(1)=0 THEN JX=JX+1
2560 IF INKEY(3)=0 THEN IX=IX*10:JX=JX*10
2570 XX=XX+JX
2580 YX=YX+IX
2599 RETURN

The graphics editor - AMPLOT 137

3000
3010
3020
3030
3040
3050
3060
3070
3080
3099
3200
3210
3220
3230
3240
3250
3300
3310
3315
3316
3320
3330
3335
3340
3350
3360
3370
3380
3390
3400
3410
3420
3499
3500
3510
3515
3520
3530
3535
3540
3550
3560
3599
3700
3710
3720
3799

REM draw cursor
PRINT CHR$(23);CHR$(1);
MOVE XGX.YGX+8
DRAWR 0,-16
MOVE XGX+8.YGX
DRAWR -16,0
PRINT CHR$(23);CHR$(0);
LOCATE#1,1,22:PRINT#1,"X=";XGX;SPC(l);
LOCATE#!,1,23:PRINT#1,"Y=";YGX;SPC(1);
RETURN
REM object
GOSUB 1700
IF INKEY(62)=0 THEN GOSUB 3300:GOSUB 1300:RETURN
IF INKEY(61)-0 THEN GOSUB 4200:GOSUB 1300:RETURN
IF INKEY(51)=0 THEN GOSUB 8600:GOSUB 1300:RETURN
GOTO 3220
REM create
GOSUB 9000
OMX-0
GOSUB 3500
OBX-OBX+1
GOSUB 1800
PRINT CHR$(23)5CHR$(1);
WHILE INKEY(58)00
DLIX-SX:GOSUB 3700
IF INKEY(62)=0 THEN GOSUB 3500:KX=62:GOSUB 9800
IF INKEY(69)=0 THEN GOSUB 3800:GOSUB 3500:KX=69:
GOSUB 9800
DLIX-SX:GOSUB 3700

WEND
DLIX-SX:GOSUB 3700
KX-58:GOSUB 9800
PRINT CHR$(23);CHR$(0);
RETURN
REM Icycle
DLIX-SX:GOSUB 3700
LEX-0
SX-SX+1:LEX-LEX+l
IF SX>LX THEN SX-1
IF OX(SX)OOMX AND LEX<LX THEN GOTO 3520
GOSUB 9500
DLIX-SX:GOSUB 3700
GOSUB 9800
RETURN
REM dline
MOVE XX(SX(DLIX)),YX(SX(DLIX))
DRAW XX(EX(DLIX)),YX(EX(DLIX))
RETURN

138 A graphics editor

3800
3810
3820
3830
3840
3850
3899

REM ostore
OX(SX)=OBX
MOVE XX(SX(SX)),YX(SX(SX))
DRAW XX(EX(SX)),YX(EX(SX))
GOSUB 9500
GOSUB 9800
RETURN

¿1000
<1010
4020
4030

REM command
IF INKEY(27)-0 THEN GOSUB 5000:KX-27:GOSUB 9800
IF INKEY(36)-0 THEN GOSUB 8000:KX-36:GOSUB 9800
IF INKEY(61)-0 THEN GOSUB 9000:GOSUB 1300:KX-61:
GOSUB 9800

4040
4050
4060
4070
4080
4090
4199

IF INKEY(38)=0 THEN GOSUB 7000:KX=38:GOSUB 9800
IF INKEY(34)=0 THEN GOSUB 3200:KX=34:GOSUB 9800
IF INKEY(53)=0 THEN GOSUB 6000:KX=53:GOSUB 9800
IF INKEY(58)=0 THEN GOSUB 5100:KX-58:GOSUB 9800
IF INKEY(59)=0 THEN GOSUB 7700:KX=59:GOSUB 9800
IF INKEY(67)“0 THEN GOSUB 9900:KX=67:GOSUB 9800
RETURN

4200
4210
4220
4230
4240
4250
4260

REM drag
GOSUB 4400
GOSUB 9000
GOSUB 1500
WHILE INKEY(58)00
GOSUB 4600
IF INKEY(62)=0 THEN GOSUB 9500:GOSUB 8200:KX=62:
GOSUB 9800

4270
4280
4290
4300
4310
4320
4330
4399

XX-0:YX=0
GOSUB 2500
GOSUB 4800
GOSUB 4600

WEND
XX-XGX:YX-YGX
KX-58:GOSUB 9800
RETURN

4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4495
4500
4510

REM ©cycle
NX = 0
OMX=OMX+1
IF OMX>OBX THEN OMX=0
FOR IX=1 TO LX

IF OX(IX)OOMX THEN GOTO 4480
NX=NX+1
TX(NX)=IX

NEXT IX
MX = 0
IF NX=0 THEN GOTO 4594
FOR RX=1 TO NX
JX=SX(TX(RX)):KX=EX(TX(RX))

The graphics editor - AMPLOT 139

¿1520 F1X=0:F2X=0
¿1530 FOR IX=1 TO MX
¿1540 IF QX(IX)=JX THEN F1X=1
¿1550 IF QX(IX)=KX THEN F2X=1
¿1560 NEXT IX
¿1570 IF FIX-0 THEN MX-MX+1 : QX(MX) = JX
¿1580 IF F2X-0 THEN MX-MX+1 : QX(MX) =KX
¿1590 NEXT RX
4594 IF OMX-0 THEN GOSUB 4700
4595 IF MX-0 THEN GOTO 4400
4599 RETURN
4600 REM draw object
4605 PRINT CHR$(23):CHR$(1);
4610 IF NX-0 THEN GOTO 4699
4620 FOR IX-1 TO NX
4630 DLIX-TX(IX):GOSUB 3700
4640 NEXT IX
4650 PRINT CHR$(23);CHR$(0);
4699 RETURN
4700 REM add points to object 0
4710 FOR IX-1 TO PX
4720 JX=1
4730 WHILE SX(JX)OIX AND EX(JX)OIX AND JX<=LX
4740 JX-JX+1
4750 WEND
4760 IF JX>LX THEN MX-MX+1:QX(MX)=IX
4770 NEXT IX
4799 RETURN
4800 REM drag
4810 IF M%=0 THEN GOTO 4899
4820 FOR IX=1 TO MX
¿¿830 XX(QX(IX))=XX(QX(IX))+XX
4840 YX(QX(IX))=YX(QX(IX))+YX
4850 NEXT IX
4899 RETURN
5000 REM point
5010 PX-PX+1
5020 XX(PX)-XGX:YX(PX)-YGX
5030 PLOT XGX.YGX
5040 GOSUB 9500
5099 RETURN
5100 REM erase
5110 GOSUB 9000
5120 GOSUB 1900
5130 KX=58:GOSUB 9800
5134 GOSUB 4400:GOSUB 3500
5135 PRINT CHR$(23);CHR$(1);

140 A graphics editor

5140 WHILE INKEY(58)<>0 AND LX>0
5150 DLIX-SX:GOSUB 3700
5155 IF INKEY(46)-0 THEN GOSUB 4400:GOSUB 3500:KX=46:

GOSUB 9800
5160 IF INKEY(62)=0 THEN GOSUB 3500:KX=62:GOSUB 9800
5170 IF INKEY(61)=0 THEN GOSUB 5300:DLIX=SX:

GOSUB 3700:KX=61:GOSUB 9800
5180 DLIX=SX:GOSUB 3700
5200 WEND
5210 GOSUB 1300
5220 KX=58:GOSUB 9800
5230 PRINT CHR$(23);CHR$(0);
5299 RETURN
5300 REM lerase
5310 IX=SX(SX):JX=EX(SX)
5320 IF IX<JX THEN F1X=IX:IX=JX:JX=F1X
5330 FOR KX=SX TO LX-1
5340 SX(KX)=SX(KX+1)
5350 EX(KX)=EX(KX+1)
5360 OX(KX)=OX(KX+1)
5370 NEXT KX
5380 LX=LX-1
5390 IF SX>LX THEN SX=1
5400 F1X=0:F2X=0
5410 FOR KX-1 TO LX
5420 IF IX-SX(KX) OR IX=EX(KX) THEN F1X=1
5430 IF JX=SX(KX) OR JX=EX(KX) THEN F2X-1
5440 NEXT KX
5450 IF FIX-0 THEN RIX-IX:GOSUB 5500
5460 IF F2X-0 THEN RIX=JX:GOSUB 5500
5499 RETURN
5500 REM remove
5510 FOR KX-RIX TO PX-1
5520 XX(KX)=XX(KX+1)
5530 YX(KX)=YX(KX+1)
5540 NEXT KX
5550 FOR KX=1 TO LX
5560 IF SX(KX)>RIX THEN SX(KX)=SX(KX)-1
5570 IF EX(KX)>RIX THEN EX(KX)=EX(KX)-1
5580 NEXT KX
5590 PX-PX-1
5599 RETURN
6000 REM file
6010 GOSUB 1600
6020 REM loop back
6030 IF INKEY(60)=0 THEN GOSUB 6200.-GOTO 6070
6040 IF INKEY(36)-0 THEN GOSUB 6400:GOTO 6070
6050 IF INKEY(69)=0 THEN GOSUB 6600:GOTO 6070
6060 GOTO 6020

The graphics editor - AMPLOT 141

6070
6080
6099
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6399
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6599
6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700
6710
6720
6730
6740
6750
6760
6799
6900
6910

GOSUB 9000
GOSUB 1300
RETURN
REM save
GOSUB 6900
OPENOUT F$
WRITE#9,PX,LX,OBX
FOR IX-1 TO PX
WRITE#9,XX(IX),YX(IX)
NEXT IX
FOR IX=1 TO LX
WRITE#9,SX(IX),EX(IX).OX(IX)
NEXT IX
CLOSEOUT
RETURN

REM load
GOSUB 6900
OPENIN F$
INPUT#9,PX,LX,OBX
FOR IX-1 TO PX
INPUT#9,XX(IX),YX(IX)

NEXT IX
FOR IX-1 TO LX
INPUT#9,SX(IX),EX(IX),OX(IX)

NEXT IX
CLOSEIN
RETURN
REM append
GOSUB 6900
OPENIN F$
INPUT#9,AX,BX,DX
FOR IX-PX+1 TO PX+AX
INPUT#9,XX(IX),YX(IX)

NEXT IX
FOR IX-LX+1 TO LX+BX
INPUT#9, SX(IX),EX(IX),OX(IX)
SX(IX)-SX(IX)+PX
EX(IX)-EX(IX)+PX
IF OX(IX)<>0 THEN OX(IX)=OX(IX)+OBX

NEXT IX
PX-PX+AX
LX-LX+BX
OBX-OBX+DX
CLOSEIN
RETURN
REM filename
WHILE INKEYSO’’’’

142 A graphics editor

6920 WEND
6930 INPUT#1,”flie name ";F$
6999 RETURN
7000 REM move
7010 GOSUB 9000
7015 GOSUB 1300
7016 GOSUB UU00
7020 GOSUB 8/100
7030 GOSUB 9700
70/10 WHILE INKEY(58)<>0
70/15 IF INKEY(Z16)=0 THEN GOSUB Zl/100:GOSUB 8/100: KX-/16:

GOSUB 9800
7050 IF INKEY(62)=0 THEN GOSUB 8/100: KX=62: GOSUB 9800
7060 XX-XGX:YX-YGX
7070 GOSUB 3000
7090 GOSUB 2500
7100 XGX-XX:YGX»YX
7110 GOSUB 7500
7120 GOSUB 3000
7130 XX(QX(CX))-XGX
71/10 YX(QX(CX))-YGX
7150 WEND
7160 GOSUB 1300
7170 KX-58:GOSUB 9800
7199 RETURN
7500 REM band
7505 PRINT CHR$(23)SCHR$(1);
7510 FOR IX-1 TO NPX
7520 DLIX=CX(IX):GOSUB 3700
7530 NEXT IX
75/10 XX(QX(CX))=XGX: YX(QX(CX))=YGX
7550 FOR IX=1 TO NPX
7560 DLIX=CX(IX):GOSUB 3700
7570 NEXT IX
7580 PRINT CHR$(23)5CHR$(0);
7599 RETURN
7700 REM origin
7710 ORIGIN -XGX.-YGX
7720 GOSUB 9000
7730 GOSUB 1300
7799 RETURN

8000 REM line
8010 GOSUB 1/100
8015 GOSUB UH00
8020 GOSUB 8/100
8030 WHILE INKEY(53)00
80/10 IF INKEY(62)=0 THEN GOSUB 8/100: KX-62: GOSUB 9800

The graphics editor - AMPLOT 143

8045
8050
8060
8070
8075
8080
8090
8100
8105
8110
8120
8125
8130
8140
8150
8160
8170
8199
8200
8210
8220
8230
8299
8400
8405
8410
8420
8430
8440
8450
8460
8470
8480
8499
8500
8510
8520
8530
8540
8599
8600
8610
8620
8630
8640

IF INKEY(46)-0 THEN GOSUB 4400:GOSUB 8400:KX=46:
GOSUB 9800

WEND
LX=LX+1
SX(LX)-QX(CX)
OTX=OMX
GOSUB 8400
WHILE INKEY(60)00
IF INKEY (62)>=0 THEN GOSUB 8400:KX=62:GOSUB 9800
IF INKEY(46)=0 THEN GOSUB 4400:GOSUB 8400:KX=46:
GOSUB 9800

WEND
EX(LX)=QX(CX)
IF OMX-OTX THEN OX(LX)=OMX
GOSUB 1300
GOSUB 3000
DLIX-LX:GOSUB 3700
GOSUB 3000
GOSUB 9500
RETURN
REM change object
GOSUB 4600
GOSUB 4400
GOSUB 4600
RETURN
REM cycle
IF MX=0 THEN GOSUB 4400
CX=CX+1
IF CX>MX THEN CX=1
GOSUB 3000
XGX*=XX (QX (CX))
YGX=YX(OX(CX))
GOSUB 3000
GOSUB 9500
GOSUB 8500
RETURN
REM find con
NPX-0
FOR IX=1 TO LX
IF SX(IX)-QX(CX) OR EX(IX)=QX(CX) THEN
NPX=NPX+1:CX(NPX)=IX

NEXT IX
RETURN
REM object transformations
GOSUB 4400
GOSUB 8700
GOSUB 9000
GOSUB 9400

144 A graphics editor

8650
8660
8670
8680
8690
8694
8695
8696
8700
8710
8720
8730
8740
8750
8760
8799
8800
8810
8820
8830
8840
8899
8900
8910
8920
8930
8940
8950
8960
8999
9000
9010
9030
9040
9050
9060
9070
9099
9400
9410

GOSUB 4600
IF INKEY(62)-0 THEN GOSUB 8200:GOSUB 8700:KX-62s
GOSUB 9800
IF INKEY(36)=0 THEN S-l.l:GOSUB 8800:KX-36:
GOSUB 9800
IF INKEY(60)-0 THEN S-0.9:GOSUB 8800:KX-60:
GOSUB 9800
IF INKEY(50)-0 THEN A-PI/8:GOSUB 8900:KX-50:
GOSUB 9800
IF INKEY(58)=0 THEN GOSUB 9000SGOSUB 1300:KX-58:
GOSUB 9800:RETURN
GOSUB 4600
GOTO 8650
REM find centroid
XCX-0:YCX-0
FOR IX-1 TO MX
XCX-XX(QX(IX))+XCX
YCX-YX(QX(IX))+YCX

NEXT IX
XCX-XCX/MX:YCX-YCX/MX
RETURN
REM scale
FOR IX-1 TO MX
XX(QX(IX)) = (XX(QX(IX))-XCX)*S+-XCX
YX(QX(IX))-(YX(QX(IX))-YCX)*S+YCX

NEXT IX
RETURN
REM rotate
FOR IX-1 TO MX
XN-(XX(QX(IX))-XCX)*COS(A)-(YX(QX(IX))-YCX)
*SIN(A)+XCX
YN-(XX(QX(IX))-XCX)*SIN(A)+(YX(QX(IX))-YCX)
*COS(A)+YCX
XX(QX(IX))-XN
YX(QX(IX))=YN
NEXT IX
RETURN
REM draw
CLG
GOSUB 9600
FOR IX-1 TO LX
DLIX-IX:GOSUB 3700

NEXT IX
GOSUB 3000
RETURN
REM menu8
DATA ’’Cycle”, "Larger", ’’Smaller"

The graphics editor - AMPLOT 145

9*120 DATA "Rotate","Exit"
9*130 RESTORE 9*100
9*1*10 DX-5
9*150 GOSUB 2000
9*160 RETURN
9500 REM bell
9510 PRINT CHR$(7);
9599 RETURN
9600 REM plot points
9610 FOR IX-1 TO PX
9620 PLOT XX(IX),YX(IX)
9630 NEXT IX
9699 RETURN
9700 REM menu9
9710 DATA "Next obj.","Cycle","Exit"
9720 DX-3
9730 RESTORE 9700
97*10 GOSUB 2000
9799 RETURN
9800 REM clear key press
9810 WHILE INKEY(KX)=0
9820 WEND
9899 RETURN
9900 REM QUIT
9910 WHILE INKEY$<>""
9920 WEND
9930 LOCATE#!,1,20
99*10 INPUT#!, "ARE YOU SURE ?",A$
9950 IF A$-"Y" THEN END
9960 GOSUB 9000
9970 GOSUB 1300
9999 RETURN

After the fairly full descriptions of the way that point and line
data is input, stored and edited, the graphics editor should be
fairly easy to understand. A text window is set up on the left hand
side of the screen so that menus listing possible commands can be
displayed to the user. You can draw under the menu area but
what you draw will be obliterated (though not lost) when a menu
is printed. You can draw anywhere on or off the screen as the area
that is displayed is only a window onto a larger drawing. Initially,
a small cross standing for the graphics cursor is displayed and can
be moved around the screen using the cursor keys. When a key
that corresponds to the first letter of any command displayed in
the current menu is pressed then the program enters a different

146 A graphics editor

mode depending on the action required. The commands imple
mented are

P - enter a new Point
L - enter a new Line
D - Draw the current data
M - Move a point
O - create, drag or transform an Object
F - Save, load or append a graphics File
E - Erase a line
W - Window
Q - Quit

Pressing P enters the co-ordinates of the graphics cursor in X%
and Y% as described in the previous section. The 'Line' command
produces a new menu on the screen and three new commands

N - Next object
C - Cycle to next point in current object
F - First point of line
S - Second point of line

The 'Draw' command draws all of the lines and points that have
been entered, so producing a 'clean' display. The 'Move' com
mand produces a third menu containing the commands

N - Next Object
C - Cycle to next point in current object
E - Exit back to main menu

While this menu is displayed you can move any existing point by
pressing C and N until the graphics cursor is positioned over it
and then using the arrow keys to shift its current position.

The 'Object' command produces a new menu which allows the
user either to create a new object, or transform or drag an existing
object.

C - Create new object
D - Drag object
T - Transform object

Each time an object is created it is assigned the next available
object number. New lines that are drawn between two points that
belong to the same object are appended to that object, otherwise
new lines are assigned to object zero. The lines that make up a

The graphics editor - AMPLOT 147

new object are determined by cycling through the lines that are
currently assigned to object zero. Dragging an object works in a
manner analogous to rubber banding. The object to be dragged is
determined by cyclic selection and then moved into place using
the arrow keys. Pressing 'T' produces a further new menu
offering the following options

C - Cycle around the objects
L - make the selected object Larger
S - make the selected object Smaller
R - Rotate the selected object
E - Exit

The 'C' command permits the user to select which object is to be
transformed by cycling through the objects. Pressing 'L' makes
the currently selected object get bigger and pressing 'S' makes it
get smaller. In other words, 'L' and 'S' provide an implemen
tation of a full scaling transformation. Pressing ZR' once makes the
object rotate through 22 ¥2 degrees (that is l/16th of a revolution).
All of these transformations are carried out interactively in the
sense that the object is redrawn after the transformation so that
the user can see what is happening. For example, to produce a
rotation of 90 degrees the user would press 'R' four times and
after each keypress the object would be displayed. Notice that
because of inaccuracies and rounding errors the shape of an
object may change under repeated scaling or rotation.

The 'File' command will save all of the arrays that define the
current display. These can then be loaded or appended to existing
graphics data. Saving and appending can be used to generate
quite complex displays very quickly. For example, suppose you
define a square, then by saving it and appending it you can build
up a display with any number of squares, which can then be
transformed, rotated etc. As long as you save single objects
defined as object number 1, appending objects results in them
receiving new object numbers just as if they had been produced
using the 'Create' option.

The 'Erase' command works by allowing the user to select a line
by the usual method of cyclic object selection and then delete it
from the line file.

The 'Window' option is the only one that hasn't been described
earlier. If the window option is selected the current position of the
graphics cursor is made to correspond to the bottom left hand
corner of the screen and this results in a different portion of the
drawing becoming visible. Using the window option you can
have a drawing as large as you like, but be warned, object cycling

148 A graphics editor

and all operations involve all of the objects and points even if they
cannot be seen because of the current position of the origin! To
restore the origin to its usual place in the bottom left hand corner
of the screen move the graphics cursor to 0,0 (using the co
ordinate display in the menu if necessary) and select the window
option. Finally the 'Quit' option allows you to stop the program!

A description of each subroutine is given below

Subroutine use - AMPLOT

Subroutine
1000
1200
1300
1400
1500
1600
1700
1800
1900
2000
2500
3000
3200
3300

function
Sets up variable and arrays
Defines a text window
Main menu
Line menu
Drag menu
File menu
Object menu
Create object menu
Erase line menu
Prints a menu
Updates cursor position
Draws cursor at XG%,YG%
Selects, creates or drags object
Creates object by cycling around lines assigned to
object zero and storing object number OM%in O%

3500
3700
3800
4000
4200
4400

Cycles around lines in current object
Draws line DLI%
Stores object number in O%
Selects command from main menu
Drags object
Cycles around objects and builds line list in T%
and point list in Q%

4600
4700
4800
5000
5100
5300

Draws object defined by the line list in T%
Add isolated points to object 0
Updates points in point list Q%
Adds point to point file
Erases a line
Removes line from line file and any isolated points
from the point file

5500 Removes point from point file and corrects line file
accordingly

6000
6200
6400

Selects load, save or append
Saves a graphics file
Loads a graphics file

The graphics editor - AMPLOT 149

6600 Appends a graphics file
6900 Gets file name in F$
7000 Moves a point
7500 Performs rubber banding
7700 Shifts origin to current position of graphics cursor
8000 Adds a line to the line file
8200 Changes object
8400 Cycles around points in current object
8500 Finds all the lines that reference point C%
8600 Selects object transformation
8700 Finds centroid of current object
8800 Scales object about centroid, scale factor=S
8900 Rotates object about centroid
9000 Draws all lines in line file
9400 Object transformations menu
9500 Rings bell
9600 Draws all the points in the point file
9700 Move point menu
9800 Waits until key K% is released
9900 Quits program

From its description AMPLOT may sound complicated to use,
but the inclusion of menus makes it quite simple in practice. It
gives the user a great deal of freedom and flexibility and by
building up a library of shapes can create complex diagrams and
technical drawings quickly and efficiently.

7 Looking at three dimensions

Three-dimensional computer graphics are exciting because they
are a way of seeing objects which do not exist, and may never
exist! So many films are now using backgrounds and even
characters that are entirely the figment of a computer's imagina
tion that realistic three-dimensional computer graphics are be
coming commonplace. This is not to say that creating such
displays is easy. Some of the most powerful computers ever built
are needed to produce a few seconds of film and even this can
take them days! With this in mind you might think that trying to
produce three-dimensional displays using BASIC would be far
too difficult. This is true if your aim is to produce the sort of
realistic graphics to be seen in feature films. However, it is
possible to write a program in BASIC that will allow you to view a
'wire frame' representation of an object from any position. For
many purposes this limited form of representation is quite suffi
cient and the rest of this chapter is concerned with developing a
wire frame viewer.

Micro 3D

Recent micro-computer games have tended to give the impres
sion that not only is it easy to produce simple three-dimensional
views, it is even easy to make three-dimensional objects move.
However, the sort of three-dimensional graphics that occurs in
games has more in common with the way an artist or draughts
man uses lines on a flat sheet of paper to produce the appearance
of depth. True three-dimensional computer graphics uses a
complete description of a shape to produce a two-dimensional
representation of what would be seen from any particular 'view
point'. For example, you might record all of the information

150 concerning the shape of a house and then choose to view it from

Micro 3D 151

above, giving a sort of floor plan, or from the front, say. The
important point is that in true three-dimensional graphics the
viewpoint can be changed with complete freedom thus allowing
the user to examine the object and gain a good impression of what
it is like. On the other hand, the 'artistic' method of three-
dimensional graphics would use ideas similar to those introduced
in Chapters Five and Six concerning two-dimensional graphics to
display a floor plan or a front elevation of the house, or whatever,
in much the same way that you would draw the same view using
pencil and paper. Although such drawings can be made 'free
hand' using nothing by intuition there are principles that govern
three-dimensional sketching. If you are interested in learning
more about art in three dimensions then see 'Graphical Com
munication', (1985), by A. Yarwood, published by Hodder &
Stoughton.

Wire frame and solid face representation
The point and the line play an equally important role in three-
dimensional graphics as they do in two-dimensional. In two
dimensions two points define the location of a straight line and a
number of connected lines define a shape. The same is true in
three-dimensional graphics, the only difference is that each point
requires three co-ordinates, usually denoted x,y,z. However the
most important feature of three-dimensional graphics is that the
two-dimensional shapes defined by a number of connected lines
can be used to enclose a volume and hence form a solid shape.
For example, a cube can be defined by putting together six square
faces, each defined by four lines.

There are two slightly different types of three-dimensional
representation, depending on whether or not the faces of a solid
object are considered transparent or opaque. If they are trans
parent, then all the faces of an object are visible at the same time
and it appears as a 'wire frame' (see fig 7.1a). If the faces are
opaque them some of the faces of the object will be obscured by
others that are closer to the viewing position (see fig 7.1b).
Producing three-dimensional images with opaque faces is a very
difficult problem involving so called 'hidden line removal'
algorithms. Although detecting and removing lines that are
hidden from view by other faces seems like a trivial problem it is
in fact extremely time-consuming and well outside the practical
range of things that the current micros can do without long time
delays. For this reason the rest of this chapter concentrates on
producing a wire frame representation of an object but it is worth
saying that this is usually the first stage on the way to producing a
solid face representation.

152 Looking at three dimensions

Fig 7.1 a) transparent cube and b) solid cube after hidden line removal

Point, line and face files
The problem of finding a data representation suitable for three-
dimensional graphics is more complex than you might expect.
Obviously the method of point and line files used in two-
dimensional graphics can easily be extended to three dimensions
by adding an extra co-ordinate to each point in the point file.
However, although the point and line file are sufficient to define
an object, they do not always present the information needed in
the most accessible form. For example, given the co-ordinates of
the eight corners of a cube stored in the point file and the 12 edges
in the line file, it is a difficult job to work out which lines in the
line file go together to form each face of the cube. This difficulty
could be alleviated by adding a 'face file' to the data structures.
Each entry in the face file would simply be a list of the lines in the
line file that make up each face. Once the face file has been added,
it is easy to see that it might be worth recording other information
about each face at the same time. For example its colour or texture
could be used to create a shaded solid representation (given
suitable hardware!). Fortunately wire frame representations of
objects can be constructed without any additional complications
to the point and line files and the problem of identifying faces will
be ignored for the rest of this chapter.

The 3D data explosion
Now that the method of storing the data that defines a three-
dimensional object has been decided, it is worth giving an
example that illustrates the 'data explosion' problem of three-
dimensional graphics. The points that have to be stored in the
point file to represent the corners of a 'unit cube' can be seen in

Micro 3D 153

Fig 7.2 Unit cube with x,y and z co-ordinates

fig 7.2. The three numbers written next to each corner are the x
co-ordinate, y co-ordinate and the z co-ordinate respectively.
Thus, the point file consists of three arrays X, Y and Z and the Ith
point is given by X(I), Y(I) and Z(I). It is obvious that even a
simple cube needs 24 (8 corners * 3 co-ordinates) array elements to
represent them. There are also twelve lines that have to be stored
in the line file to complete the description of the cube. Each line is
defined by a start point and an end point and so the twelve lines
take 24 array elements to store, making a grand total of 48 array
elements. This should be compared to the 16 elements needed in
two dimensions to store the description of a square. It doesn't
take much imagination to see that getting the data for an object
with a complex shape into the system is going to be a major
problem.

Three-dimensional transformations
The method of rotating, translating and scaling in two dimen
sions is easy to extend to three dimensions. The only real change
is that instead of transforming a pair of co-ordinates we have to
transform three and hence use three equations. For example a
three-dimensional translation is produced by the following three
equations

x' = x + a
y' = y + b
z' = z + c

154 Looking at three dimensions

where the values of a, b and c control the amount and direction
that each point is moved. In the same way, a three-dimensional
scaling can be produced by multiplying each co-ordinate by a
scaling factor. Three-dimensional rotations are rather more tricky
than their two-dimensional counterparts, in that it is possible to
rotate a three-dimensional object about any given line. In other
words, in three dimensions objects rotate about 'axes of rotation'
rather than points of rotation. It is possible to write down a
transformation for rotation about a general axis but it is very
complicated. Fortunately, a three-dimensional rotation about any
given line can be produced by a combination of rotations about
each of the three co-ordinate axes. This is analogous to the way a
rotation about any given point can be produced using a rotation
about the origin in two-dimensional graphics, see Chapter Six.
Rotations about the co-ordinate axes are comparatively simple.
For example, a rotation around the Z axis through an angle T is
produced by

x' = x cos(t) - y sin(t)
y' = x sin(t) + y cos(t)
z' = z

Rotations about the other axes can be produced by similar sets of
equations. If you would like to know more about how to derive
three-dimensional transformations, you will have to learn some
thing about matrix algebra. There are lots of books on this subject
but one relevant source is 'Principles of Interactive Computer
Graphics, 2nd Edition', (1981), by W. M. Newman and R. F.
Sproull, published by McGraw-Hill.

Projections
Using three-dimensional transformations, it is possible to alter
the view of any object by rotation, translation or scaling but there
still remains a fundamental problem - how can a three-
dimensional object be drawn on a two-dimensional screen. This
problem is essentially that each point on the object has three co
ordinates but a point on the display screen has only two co
ordinates. Clearly what is needed is a way of reducing the three
co-ordinates to two in such a way that the points plotted on the
display screen look like the object when viewed from the given
position. In other words, we have to find a transformation that
will convert each point in the object x,y,z to a point a,b in two
dimensions, such that the set of two-dimensional points gives an
impression of the original object. A transformation of this type is
known as a 'projection' because it is related to the idea of

Micro 3D 155

projecting a shadow of an object onto a screen.
There are a number of different types of projection, but the only

one that produces a realistic view of an object is the 'perspective
projection'. In real life the apparent size of something depends on
how far away it is from the observer. For example, if you were to
view a wire cube from a few feet the top front horizontal edge
would appear slightly larger than the top rear horizontal edge -
see fig 7.3. As you move further away from the cube then the
difference between the two edges becomes less, and as you move
closer it becomes exaggerated. This is, of course, the phenomenon
of 'perspective' and it is something that we all take for granted
both in our everyday viewing of the world and in traditional
pictures and drawings that attempt to produce a sense of realism.

The equations of the perspective projection of the point given
by x,y,z into two dimensions is surprisingly simple

z xc - x zc a =___________
z - zc

z - zc

where the point given by xc,yc,zc is called the 'centre of projec
tion'. Roughly speaking, the centre of projection is the position
that an observer would occupy to see the same results as those
produced by the perspective projection. The perspective projec
tion produces a two-dimensional representation rather like a
photograph of a wire frame model of the object, and the centre of
projection is the position where an observer would have to be to

Fig 7.3 The effects of perspective

156 Looking at three dimensions

see exactly what the photograph shows. Obviously, the position
of the centre of projection alters the amount of each side of the
cube which can be seen in the projection, but how does its
distance from the cube affect the projection? If the centre of
projection is moved further away the perspective effect is lessened
and if it is moved closer the perspective is exaggerated - and this
is exactly what the observer would see if located at the centre of
projection. For any viewed object there is a position of the centre
of projection that will produce a realistic display: too close to the
object and the perspective will appear exaggerated, too far away
and the perspective will be too slight.

The data entry problem
The data explosion problem in three-dimensional graphics makes
high demands on the amounts of computer memory needed to
store even a simple object, but there is also the problem of
entering such large amounts of data. In the two-dimensional case
it was possible to avoid entering long lists of co-ordinate, line and
object data by using interactive data entry and modification. In
principle this interactive approach could be extended to include
three-dimensional graphics but it presents substantial difficulties
at two levels.

First, there is the obvious problem of making the program work
fast enough to give the impression of real time data entry and
editing. Even if these problems of speed of calculation could be
overcome, there is the second and more fundamental problem of
the ambiguity of the third co-ordinate. A projection reduces to a
point in three dimensions, at x,y,z say, to a point in two
dimensions at a,b. However, selecting this point on the screen
doesn't automatically specify the point x,y,z in three dimensions.
There are a great many points in three dimensions that are
projected onto the point a,b and to let the computer know which
one you are referring to you have to supply some additional
information. In other words, there is no simple way of inverting a
projection so that you can go back from screen co-ordinates to
three-dimensional co-ordinates. Of course, there are ways of
providing the additional information to determine which of the
many three-dimensional points you are referring to but they are
all unnatural and clumsy. There seems to be no alternative but to
accept that while the TV screen is an adequate three-dimensional
output device it is poor when it comes to the associated input
task.

An alternative method of building up a three-dimensional
object is to use the draughtsman's traditional technique of
drawing a number of different 'elevations' of an object. After a

Micro 3D 157

little practice humans are remarkably good at putting together the
different pieces of information contained in, say, a top, front and
side elevation of an object to arrive at a three-dimensional
understanding of the object. A computer can also be programmed
to take a number of elevations and fuse them into a three-
dimensional object, but it is more difficult than you might expect.
A system based on this idea would allow the user to modify
points displayed in three separate elevations of the object while
simultaneously displaying a three-dimensional representation of
the object in the middle of the screen. Once again the computa
tional requirements are well beyond anything that a micro can
handle in a reasonable time. It is unfortunately true that in most
cases the only way to obtain a three-dimensional representation
of something inside a computer is to measure and enter the
co-ordinates of each point, along with all the line and face
information that is necessary - and this is often a major task.

Symmetry and solids of revolution
Although the prospect of entering large amounts of data to define
a three-dimensional object is generally rather bleak there are
certain special classes of object that can be generated from very
small quantities of initial data. In particular, it is possible to take
advantage of any symmetries an object might possess to reduce
the total amount of data input required. For example if an object
has a central plane of mirror symmetry - if it can be thought of as
two halves, each a mirror image of the other - then the amount of
data entry can be halved. After entering the points and lines that
define one side of the object, an appropriate reflection trans
formation can be used to generate the other half.

An extreme example of the use of symmetry to reduce the data
entry problem can be found in a class of objects that possess an
axis of rotational symmetry - the so called 'bodies of revolution'.
The idea of a body of revolution can be most easily understood by
thinking of the solid objects that could be produced by cutting out
a flat shape, in cardboard say, and rotating it around a central
axis. For example the outline in fig 7.4, if rotated about its longest
side would generate a wine glass shape. Obviously, a solid of
revolution can be defined by entering only the co-ordinates of the
points that make up its outline and this is considerably fewer than
the total number of points it contains.

The wire frame viewer - AMVIEW

AMVIEW, the wire frame viewer program given below is, in

158 Looking at three dimensions

Fig 7.4 The profile of a wine glass

many ways, the first step on the way to the ultimate goal of three-
dimensional graphics. That is, a program that will display a
realistic representation of an object viewed from any position.
AMVIEW will, given a definition of an object in terms of co
ordinates, allow you to view the object from any position, but
only as a wire frame object. In terms of practical applications, a
wire frame viewer is at the heart of such things as flight simu
lators and many computer-aided design packages. For example,
in the case of the flight simulator the object being viewed is
composed of all the buildings, roads, trees etc that make up the
landscape, and the particular view that is produced on the
computer screen corresponds to what would be seen from a
aircraft flying over the landscape.

The wire frame viewer given in this chapter is not quite up to
the standard of a flight simulator - but only because it is written in
BASIC and hence not quite fast enough! In fact the speed of the
program is much faster than you might expect for such a complex

The wire frame viewer - AMVIEW 159

calculation - around a second per twenty display points - and it is
almost good enough to give the impression of 'flying over the
object being viewed. The response of the program could certainly
be improved by optimising the procedures that do the calculation,
but for real speed you cannot beat assembler.

The ideal view
Before presenting the wire frame viewer it is worth considering
what an ideal program should allow the user to do. The difficulty
of defining a three-dimensional object is simply the sheer number
of co-ordinates that have to be entered. This, however, is not a
problem that has much to do with the essence of the viewer and
so the co-ordinates that define the object can be stored as DATA
statements. Given a description of the object in terms of the co
ordinates of its points, the only item of data left to define is the
position of the 'observer'. This is not as simple as you might
expect. To start with it is not enough to give just the co-ordinates
of the observer's position because, while this would tell you
where the observer was, it wouldn't tell you where the observer
was looking! It is clear that, even if the co-ordinates of the
observer's position were sufficient, this wouldn't be an acceptable
way for the user to interact with the program. What is needed is
some way in which the user can control the movement of the
observer in a 'natural' way, without having to worry about
numerical co-ordinates. In general, when viewing a real object
humans tend to think in terms of moving closer or further away,
of moving to the right or the left or up and down and these are the
three types of movement that the program should try to make

Fig. 7.5 R and phi as distance and angle of elevation

160 Looking at three dimensions

Moving the observer
It soon becomes obvious that the usual three x,y,z (or Cartesian)
co-ordinates are not appropriate for the purpose of varying the
observer's position. However, if the observer's position is
specified using 'polar co-ordinates' then there is an immediate
correspondence between the co-ordinates of a point and the
distance from the object, moving left and right and up and down.
In polar co-ordinates the position of a point is specified by giving
three quantities: R, a distance; and two angles, TH and PH. (More
usual notation than TH and PH are the Greek symbols theta and
phi.) R is simply the distance of the point from the origin and PH
is its angle elevation, see fig 7.5. The angle TH can be thought of
as the number of degrees that you have to rotate the x axis
through to reach the point, see fig 7.6. Keeping TH and PH fixed
and varying R takes the point closer and further away from the
origin without altering its orientation. Changing TH while
keeping PH and R fixed makes the point 'move around' the origin
without altering its distance or its height. Similarly, changing PH
while keeping TH and R fixed alters only the height of the object
but not its distance from the origin.

If the observer's position is specified using R, TH and PH then
it is not difficult to see that each co-ordinate can be changed by
pressing a key on the keyboard, thus giving the user a natural and
interactive control of the observer's position. Although polar
co-ordinates solve the problem of specifying the observer's posi
tion there is still the small matter of where the observer is looking.
If we imagine that the observer is in fact a camera then the
question can be more simply put as which way is the camera
pointing? The most obvious solution is to make the camera look at

Fig 7.6 Theta as rotation around object

The wire frame viewer - AMVIEW 161

the origin, because this is the point that the polar co-ordinate
system is centred on. The only trouble is that the object of interest
may not be positioned at the origin! The answer is to shift the
origin of the polar co-ordinate system to a position that cor
responds to a point within the object that we want the camera to
look toward at all times - this point is known as the 'centre of
attention'. Thus the observer is best thought of as a camera that is
always pointing at the centre of attention and its position,
distance, rotation and elevation are all measured from this one
important point.

The observer's view
Now that we have a way of specifying where the observer is and
which way he is looking the rest is easy - in theory at least! The
only remaining problem is that we have a description of the object
in terms of co-ordinates that are relative to a fixed set of axes - the
object's co-ordinate system - but these are not the co-ordinates
that describe the object as viewed from the observer's position.
Clearly, the observer has a different set of axes, that the co
ordinates of the object are measured from - the view co-ordinate
system. The co-ordinates of the object in the view co-ordinate
system represent the particular point of view that the observer
has of the object and clearly they change as the position of the
observer and the centre of attention change. To allow the pro
gram to show different views of the object, it is crucial to find a
way of converting the unchanging object co-ordinates into the
variable view co-ordinates - in fact what we need is a trans
formation.

Although it may sound difficult to work out, such a trans
formation involves no new principles. For example, as the
observer moves around an object it appears to rotate and so its
co-ordinates in the observer's co-ordinate system can be worked
out by applying an appropriate transformation to produce a
rotation about the object's z axis. In other words, it doesn't really
matter whether you consider the observer to be rotating around a
fixed object or the object to be rotating around a fixed observer!
Even though there are no new principles involved, working out
the transformation that will convert the object's co-ordinates into
the co-ordinates that are appropriate for the observer's current
position at R,TH,PH is a very tedious exercise in algebra. Rather
than going into the details of the equations, the transformation is
presented as a number of subroutines within the wire frame
viewer.

162 Looking at three dimensions

Fig 7.7 Co-ordinate system and the observer as a camera

A summary
At this point we have all of the ideas that are necessary to
implement the wire frame viewer. The object or objects will be
represented by point and line files as described earlier. The
observer's position will be fixed by the location of the centre of
attention and the polar co-ordinares R, TH and PH. To obtain the
objects as seen from the observer's position all we have to do is
apply the appropriate view transformation to all of the points in
the point file. Finally to obtain a two-dimensional representation
of the objects we have to apply a perspective transformation and
then plot the resulting two-dimensional points and lines.

Positioning the centre of attention is simply a matter of deciding
what point in the object you should look at. The appropriate
position of the centre of projection is a little more difficult to
determine. So far we have imagined the observer to be positioned
at R,TH,PH and looking toward the centre of attention but in the

The wire frame viewer - AMVIEW 163

section introducing the perspective projection it was stated that
the observer could be thought of as positioned at the centre of
projection. To understand exactly where the observer is it is better
to think once again of the observer as a camera pointing at the
centre of attention. The two-dimensional co-ordinates produced
by the perspective transformation can be thought of as defining
points on the film in the camera and the resulting image as a
photograph of the scene. In these terms the centre of projection is
the position that an observer would have to occupy to have the
same view as that reproduced in the photograph. It is important
to realise that the centre of projection is measured relative to the
film in the camera with the x,y axis corresponding to the co
ordinates produced by the perspective projection. So it lies in the
plane of the film and the z axis points toward the centre of
attention, see fig 7.7. It is the convention that positive z co
ordinates correspond to positions on the object's side of the film.

AMVIEW

A complete listing of the wire frame viewer program can be seen
below. It should come as something of a pleasant surprise to
discover that such a sophisticated three-dimensional viewer turns
out to be a fairly short BASIC program.

10
20
30
40
50
70
80
90
100
110
120
130
140
150
160
170
199

REM wire frame viewer
MODE 2
GOSUB 9000
GOSUB 1800
WHILE QUITX-0
WHILE MENUX=0
IF MX=1 THEN GOSUB 1000 ELSE GOSUB 500
GOSUB 5000
GOSUB 6000
GOSUB 7000
GOSUB 3000
GOSUB 4000
GOSUB 2000
WEND
GOSUB 9000

WEND
END

500
510
520
530

REM data set for VDU
RESTORE 500
DATA 0,0,0
DATA 200,0,0 ,

164 Looking at three dimensions

5 ¿10 DATA 0,10,0
550 DATA 200,10,0
560 DATA 0,20,100
570 DATA 200,20,100
580 DATA 0,120,100
590 DATA 200,120,100
600 DATA 20,40,100
610 DATA 180,40,100
620 DATA 20,100,100
630 DATA 180,100,100
640 DATA 0,0,200
650 DATA 200,0,200
660 DATA 0,120,200
670 DATA 200,120,200
680 DATA 0, 1
690 DATA 2,3
700 DATA 1,3
710 DATA 2, 4
720 DATA 3, 5
730 DATA 4,5
740 DATA 5.7
750 DATA 6,7
760 DATA 8,9
770 DATA 10,11
780 DATA 8,10
790 DATA 9,11
800 DATA 12,13
810 DATA 14,15
820 DATA 13.15
830 DATA 12,14
840 DATA 0,12
850 DATA 1,13
860 DATA 6,14
870 DATA 7.15
880 DATA 4.6
890 DATA 0.2
900 P-16
910 L-22
920 FOR I -0 TO P-1
930 READ X(I),Y(I),Z(I)
940 NEXT I
950 X(P) = 0: Y(P)=1: Z(P)=0
960 P-P+l
970 FOR I -0 TO L-l
980 READ S(I),E(I)
990 NEXT I
995 CX-100:CY-60:CZ-100
999 RETURN
1000 REM data set for wine glass
1100 RESTORE 1000
1110 DATA 0,0.0

AMVIEW 165

1120 DATA 100.0,0
1130 DATA 10,40,0
1140 DATA 10,200,0
1150 DATA 100,300,0
1160 DATA 110,350,0
1170 DATA 100,400,0
1180 DATA 0,1
1190 DATA 1,2
1200 DATA 2,3
1210 DATA 3.4
1220 DATA 4,5
1230 DATA 5,6
1240 P-7
1250 L-6
1260 FOR 1-0 TO P-1
1270 READ X(I),Y(I),Z(I)
1280 NEXT 1
1290 FOR 1-0 TO L-l
1300 READ S(I),E(I)
1310 NEXT I
1320 N-10
1330 GOSUB 8000
1340 X(P)-0:Y(P)-1:Z(P)=0:P-P+l
1350 CX-0:CY-200:CZ-0
1799 RETURN
1800 REM inlt
1810 TH-PI/4
1820 PH-PI/180*35
1830 R-1000
1880 XC-320:YC-200
1890 ZC--1000
1900 DIM A(200),B(200)
1910 DIM X(200),Y(200),Z(200)
1920 DIM S(400),E(400)
1930 QUITX-0
1940 MENUX-0
1999 RETURN
2000 REM command
2010 WHILE A»O”D” AND A$<>"M"
2020 LOCATE 1,24
2030 PRINT TAB(2)j"DISTANCE-"}R}
2040 PRINT TAB(20);"THETA-"}INT(180*TH/PI);
2050 PRINT TAB(35)}"PHI-"}INT(180*PH/PI)
2060 A$-INKEY$:A$-UPPER$(A$)
2070 IF A»-"" THEN GOTO 2060
2080 IF A$-"C" THEN R-R-10
2090 IF A$-"F" THEN R-R+10
2100 IF ASC(A$)-242 THEN TH-TH-PI/180
2110 IF ASC(A$)-243 THEN TH-TH+PI/180

166 Looking at three dimensions

2120
2130
21U0
2150
2160
2999

IF ASC(A$)-2*ll THEN PH-PH-PI/180
IF ASC(A$)=2*10 THEN PH-PH+PI/180
IF A$-"M" THEN MENUX-1

WEND
AS-’”’
RETURN

3000
3010
3020
3030
30¿l0
3050
3060
3070
3999

REM pars
FOR 1-0 TO P-1
A(I)--X(I)*ZC + Z(I)*XC
B(I)—Y(I)*ZC+Z(I)*YC
W-Z(I)-ZC
A(I)-A(I)/W
B(I)-B(I)/W

NEXT I
RETURN

¿1000
¿1010
¿1020
¿1030
U0U0
H050
¿1999

REM draw
CLS
FOR 1-0 TO L-l
MOVE A(S(I)),B(S(I>)
DRAW A(E(I)),B(E(I))

NEXT I
RETURN

5000
5010
5020
5030
50*10
5050
5060
5070
5080
5090
5100
5110
5999

REM consts
CT-COS(TH)
ST-SIN(TH)
CP-COS(PH)
SP-SIN(PH)
TX--(CX+R*CP*CT)
TY--(CY+R*SP)
TZ— (CZ+R*CP*ST)
CX--CP*ST/SQR(SP*SP+CP*CP*ST*ST)
SX--SP/SQR(SP*SP+CP*CP*ST*ST)
CY-SQR(SP*SP+CP*CP*ST*ST)
SY--CP*CT
RETURN

6000
6010
6020
6030
60*10
6050
6060
6070
6080
6090
6100
6110
6120

REM do trans
FOR 1-0 TO P-1
IF I-P-l THEN GOTO 6060
X(I)-X(I)+TX
Y(I)-Y(I)*TY
Z(I)-Z(I)+TZ
X-X(I)
Y-Y(I)*CX-Z(I)*SX
Z-Y(I)*SX+Z(I)*CX
X(I)-X:Y(I)-Y:Z(I)-Z
X-X(I)*CY-Z(I)*SY
Y-Y(I)
Z-X(I)*SY+Z(I)*CY

AMVIEW 167

6130
6140
6999

X(I)-X:Y(I)-Y:Z(I)-Z
NEXT I
RETURN

7000 REM do upright
7010 V-SQR(X(P-1)*X(P-1)+ Y(P-1)*Y(P-1))
7020 C-Y(P-1)/V
7030 S-X(P-1)/V
7040 FOR 1-0 TO P-2
7050 X-X(I)*C-Y(I)*S
7060 Y-X(I)*S+Y(I)*C
7070 X(I)-X+320:Y(I)-Y+200
7080 NEXT I
7999 RETURN
8000 REM rotate (N)
8010 PN-P
8020 A=2*PI/N
8030 FOR JX=1 TO N-l
8040 CA-COS(A*JX)
8050 SA=SIN(A*JX)
8060 FOR IX-0 TO PN-1
8070 X(P)-X(IX)*CA
8080 Y(P)-Y(IX)
8090 Z(P)-X(IX)*SA
8100 P-P+l
8110 S(L)-P-1:E(L)-P
8120 L-L+l
8130 NEXT IX
8140 L-L-l
8150 NEXT JX
8160 FOR IX=0 TO PN-1
8170 FOR JX-1 TO N-l
8180 S(L)-IX+(JX-1)*PN
8190 E(L)-IX+JX*PN
8200 L-L+l
8210 NEXT JX
8220 S(L)-E(L-1)
8230 E(L)-IX
8240 L-L+l
8250 NEXT IX
8299 RETURN
9000 REM menu
9010 CLS
9020 WHILE M»O"V" AND M«O"G" AND M$<>’’Q’’
9030 LOCATE 14,10
9040 PRINT ’’Which object do you wish to see ”
9050 LOCATE 9,13
9060 PRINT "A VDU (V), wine glass (G), or quit (Q)’’;
9070 INPUT M$
9080 M$=LEFT$(M$,1)

168 Looking at three dimensions

9090 M$=UPPER$(MS)
9100 WEND
9110 IF M$="G" THEN MX = 1 ELSE MX=0
9120 IF MS-"Q" THEN QUITX-1
9130 MENUX=0
9140 CLG
9150 M$ = ”"
9199 RETURN

Once you get the program up and running you can select one of
two different demonstration objects - a VDU or a wine glass. The
VDU is defined using a complete point and line file, but the wine
glass is generated as a solid of rotation from a two-dimensional
definition of its profile. Samples of the output of the program can
be seen in figs 7.8 and 7.9. You can view either object from
various positions by using the C key to move Closer, the F key to
move Further away and the arrow keys to move up and down,
and left and right, around the object. Each time you press D the
object is Drawn from the current position of the observer.

Once you get tired of exploring the example shapes you might
like to program in your own shapes by changing the DATA
statements, lines 520 to 890 for the VDU and lines 1110 to 1230 for
the wine glass. These record the co-ordinates of P points and L
lines in the format described in detail earlier but, put simply, the
first P DATA statements are the co-ordinates of the points that
make up the object and the next L DATA statements are the start
and end point of the lines that make up the object. Thus, line 680
states that the first line in the object connects point 0 with point 1
(i.e. the point defined by line 520 with the point defined by line
530). If you want to input your own shape then I would suggest
that you draw the shape on graph paper before you start typing
DATA statements.

You might also like to change the centre of projection defined
by lines 1880 and 1890 although the only value worth changing is
ZC which alters the degree of perspective. Its current setting at
-1000 produces a slightly exaggerated perspective, but this is
useful for demonstration. You can also change the centre of
attention defined in line 995 for the VDU and line 1350 for the
wine glass.

The structure of the program can be seen in the subroutine
function table given below. The 'number crunching' subroutines
are not optimised for speed but are organised to show the steps in
the calculation. Finally it is worth saying that if you have any
trouble with the program you should check that you have entered
subroutines 5000, 6000 and 7000 correctly as any slight error in the
complex calculation will result in rubbish.

AMVIEW 169

DISTANCE: 500 THETA: 16 PHI: 32

DISTANCE: S00 THETA: 58 PHI: 27

DISTANCE: 510 THETA:-90 PHI: 0

DISTANCE: 510 THETA:-62
Fig 7.8 Views of a VDU using AMVIEW - a sequence of four different views

170 Looking at three dimensions

DISTANCE: 1000 THETA: 45 PHI: 35

DISTANCE: 1000 THETA: 45 PHI: 90

DISTANCE: 1000 THETA: 45 PHI: 60

Fig 7.9 Views of a wine glass using AMVIEW - a sequence of three views

AMVIEW 171

Subroutine Use - AMVIEW

Subroutine
500
1000
1800
2000
3000
4000
5000

Function
Data for VDU shape
Profile data for wine glass
Initialisation - XC, YC,ZC is the centre of projection
Position input subroutine
Perspective projection routine
Line drawing routine
Calculates SIN, COS and other values for the
current view transformation

6000
7000

applies the view transformation to the point file
applies a final 'head up' transformation to make
sure that the object is the right way up and centres
the object in the Amstrad's screen

8000 Rotates the profile data to produce a full 3D object
N copies of the profile are made

9000 Presents menu

AMVIEW is a prototype of programs that have valuable
practical application in many areas - from architecture and design
to medicine and nuclear technology. Using it is both fun and
instructive and it serves to demonstrate that, although a home
computer, the Amstrad has a great deal of potential.

Appendix I
A resumé of
graphics commands

The 464 graphics commands

General
1 In each mode there are a given number of logical colours
Mode 0-16 Mode 1-4 Mode 2-2
2 There are 27 physical colours and these are assigned to logical
colours by
INK L, P
where L is the logical colour and P is the physical colour or
INK L, Pl, P2
where the assigned colour flashes between Pl and P2
3 The border colour is set by
BORDER P
or
BORDER Pl, P2
for a flashing colour

Text
4 The character co-ordinate system changes with mode
Mode 0 - 20 by 25 Mode 1 - 40 by 25 Mode 2 - 80 by 25
5 The text cursor is positioned by LOCATE X,Y
6 The text foreground colour is set by PEN L
7 The text background colour is set by PAPER L
8 User-defined characters are defined by

172 SYMBOL ascii code, 8 pixel definitions

The 464 graphics commands 173

9 Space for user-defined characters is reserved by
SYMBOL AFTER ascii code
The default is SYMBOL AFTER 240
10 A text window is set by
WINDOW #S,L,R,T,B
11 A text window is cleared by CLS #S
12 The current text cursor position is given by the pair of
functions
POS,VPOS

High resolution
13 All high resolution commands treat the screen as if it were 640
by 400 and the origin 0,0 is in the bottom left hand corner
14 Graphics background colour is set by CLG L and graphics
foreground colour is set within each graphics command
15 The graphics cursor is moved and pixels plotted by

moves graphics cursor to X,Y
moves graphics cursor to xg+DX,yg+DY
sets pixel at X,Y to colour L
sets pixel at xg+DX,yg+DY to L
draws lines from xg,yg to X,Y in colour L
draws line from xg,yg to xg+DX,yg+DY
in colour L

MOVE X,Y
MOVER DX,DY
PLOT X,Y,L
PLOTR DX,DY,L
DRAW X,Y,L
DRAWR DX,DY,L

where xg,yg is the current position of the graphics cursor and L is
optional
If L is specified then the graphics foreground colour is set to L and
if L is omitted then the current graphics foreground colour is used
to plot the pixel or draw the line
16 A graphics window can be defined by
ORIGIN X,Y,L,R,T,B with the new origin at X,Y
17 The graphics window can be cleared by
CLG L which also sets the current graphics background colour to
L
18 The current graphics cursor position is given by the pair of
functions XPOS,YPOS
19 The logical colour of the pixel at X,Y is returned by TEST X,Y
and TESTR DX,DY returns the logical colour of the pixel at
xg+DX,yg+DY
20 Text is printed at the graphics cursor position following
TAG and at the text cursor following TAGOFF

CPC 664 commands

21 The graphics foreground and background colours can be set

174 Appendix I

using the GRAPHICS PEN and GRAPHICS PAPER commands
22 The MOVE and MOVER command can now specify a fore
ground colour
23 All graphics commands can be used with an extra parameter
that sets the graphics ink mode
24 The FILL command can be used to fill irregular areas
25 The COPYCHR$ command can be used to find out what
character is already printed on the screen
26 The FRAME command can be used for synchronising anima
tion to' the TV frame rate
27 MASK can be used to draw dotted lines and suppress the
drawing of line endpoints

Index

acceleration, 28
acceleration control, 45-47
aliasing, 12
AND, 18
animation loop, 33
ASC, 5
ASCII code, 4
astroid, 82
axis of rotation, 154

bar chart, 75
BINS, 9
blanking, 26, 57
bodies of revolution, 157
BORDER, 10
brush, 98-101

cartesian co-ordinates, 160
centre of attention, 161
centre of gravity, 133
centre of projection, 155
centriod, 133
chain code, 92-95
character graphics, 2
CHRS, 5
CLG, 16, 20
CLS, 16, 19
circles, 84
colour, 9-11, 15-16
colour mapping, 68
control codes, 16-17
co-ordinates, 11
co-ordinate based graphics, 73
co-ordinate free graphics, 96
COPYCHRS, 25, 56
COS, 85
curves, 77, 78
cyclic selection, 125

dragging, 129
DRAW, 14, 24
DRAWR, 15, 24, 74

elevations, 156-157
ellipse, 85
explosions, 39

FILL, 24
filling, 101
flash animation, 70
flood fill, 101, 104
force function, 28
FRAME, 24, 59

graphics cursor, 13, 14, 97
graphics increment, 13, 80
GRAPHICS PAPER, 25
GRAPHICS PEN, 25

HEXS, 9
hexadecimal numbers, 7-9
high resolution graphics, 3, 11

icon, 106
INK, 10, 15
ink mode, 17
integer variable, 35
interactive control, 40
internal animation, 35

joysticks, 43, 97

LOCATE, 4, 19, 22

MASK, 24
MOBs, 27
mode, 2-3
MOVE, 14, 24, 74
MOVER, 14, 24
multi-coloured sprites, 54

object, 126
object file, 127
OR, 18
OR ink mode, 56, 99 175

176 Index

ORIGIN, 20-21

PAPER, 10, 15
PEN, 10, 15
perspective projection, 155
pie chart, 87-88
pixel, 2, 11-13
PLOT, 14, 24
PLOTR, 15, 24
polar co-ordinates, 160, 162
point file, 122
polygon, 122
positional control, 41-43
PRINT, 2, 4
prototype, 133
procedural graphics, 73
projections, 154

queue, 62-63

real variables, 35
rotation, 131-132
rubber banding, 104, 126

scaling, 79, 131, 154
scan fill, 101-103
self-blanking, 44, 58
SIN, 85

solid face, 150
SPEED INK, 61
sprite, 27, 53
sprite event, 32, 38-40
symmetry, 157
synchronisation, 58

TAG, 21, 23, 53, 99
TAGOFF, 21, 23, 54
TEST, 21
TESTR, 21
text scrolling, 71-72
text window, 19
translation, 131
transparent mode, 18-19, 55

user-defined graphics, 5-7

velocity, 27
velocity control, 43,-45
vertical retrace period, 56
view point, 150

WINDOW, 19
wire frame, 150-151, 157

XOR, 18
XOR ink mode, 57, 98

WORKING GRAPHICS
ON THE

AMSTRAD
CPC464&664

Graphics are becoming more and more important in personal
computer applications, and whether your interest is in games,
serious uses in the home or business applications, it's important to
present the screen displays of your programs in the most effective
way. This book sets out to show you how to use and how to get
the best from the graphics on the Amstrad CPC464 and 664
computers. Subjects covered in detail include animation and
sprites, computer-assisted painting, two- and three-dimensional
graphics, and charts and graphs.

The emphasis throughout the book is on the practical aspects of
Amstrad graphics you can use the listings as they stand, in
which case you will find that the painting program, the
three-dimensional viewer and the graphic design program
would each cost more than this book if bought as a separate
software package. Alternatively, since all the routines are fully
explained, you can modify them to suit your own particular
application, or use them as a model for your own totally new
graphics programs.

All the listings in the book are taken from printer dumps of
working programs, so you can be sure no typesetting errors have
crept into them; similarly, all the line drawings are taken from
working programs, so you will be able to reproduce all the
graphics pictures in the book simply by typing in the programs
from the listings provided.

All in all, a book for every Amstrad owner whether games player
or serious user.

9 780852 428740

s

s

i I
£
Po
O*
2

99
n
ea
en
es
O
O
K
7Ï

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Working Graphics on the AMSTRAD CPC 464 & 664
	Contents
	1 - Amstrad graphies
	2 - Animation in text mode using sprites
	3 - Advanced animation
	4 - Charts and graphs - an introduction to co-ordinates
	5 - Freestyle graphics - painting
	6 - A graphics editor
	7 - Looking at three dimensions
	Appendix I - A resumé of graphics commands
	Index
	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2021-04-15

